Pandas如何按周、月、季度、年统计数据,方法是什么
Admin 2022-05-21 群英技术资讯 1011 次浏览
将日期转为时间格式 并设置为索引
import pandas as pd data=pd.read_excel('5\TB201812.xls',usecols=['订单创建时间','总金额']) print(data) data['订单创建时间']=pd.to_datetime(data['订单创建时间']) data=data.set_index('订单创建时间') print(data)
按周、月、季度、年统计数据
import pandas as pd data=pd.read_excel('5\TB201812.xls',usecols=['订单创建时间','总金额']) data['订单创建时间']=pd.to_datetime(data['订单创建时间']) data=data.set_index('订单创建时间') print(data.resample('w').sum()) print(data.resample('m').sum()) print(data.resample('Q').sum()) print(data.resample('AS').sum())
使用to_period()方法 优化
按月、季度和年显示数据(不统计数据)
import pandas as pd data=pd.read_excel('5\TB201812.xls',usecols=['订单创建时间','总金额']) data['订单创建时间']=pd.to_datetime(data['订单创建时间']) data=data.set_index('订单创建时间') print(data.resample('w').sum().to_period('w')) print(data.resample('m').sum().to_period('m')) print(data.resample('q').sum().to_period('q')) print(data.resample('as').sum().to_period('a'))
与之前相比 日期的显示方式发生了改变
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
这篇文章主要为大家介绍了python之异步编程,具有一定的参考价值,感兴趣的小伙伴们可以参考一下,希望能够给你带来帮助<BR>
文本给大家介绍的是Python的字符串的内容,详细介绍了字符串的创建,字符串的定义,字符串的操作,具有一定的借鉴价值,有需要的朋友可以参考学习。
先定义一个类:classPoint:def__init__(self,x,y):self x=xself y=y下面我们使用9种方法来生成新的对象:point1=Point(1,2)point2=eval("{}
今天教大家怎么用pygame实现简单的金币旋转效果,文中有非常详细的代码示例,对正在学习python的小伙伴们很有帮助,需要的朋友可以参考下
最近在使用python做接口测试,发现python中http请求方法有许多种,今天抽点时间把相关内容整理,分享给大家,具体内容如下所示:一、python
成为群英会员,开启智能安全云计算之旅
立即注册Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008