Pandas如何按周、月、季度、年统计数据,方法是什么
Admin 2022-05-21 群英技术资讯 1195 次浏览
这篇文章主要介绍“Pandas如何按周、月、季度、年统计数据,方法是什么”的相关知识,下面会通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“Pandas如何按周、月、季度、年统计数据,方法是什么”文章能帮助大家解决问题。将日期转为时间格式 并设置为索引
import pandas as pd
data=pd.read_excel('5\TB201812.xls',usecols=['订单创建时间','总金额'])
print(data)
data['订单创建时间']=pd.to_datetime(data['订单创建时间'])
data=data.set_index('订单创建时间')
print(data)

按周、月、季度、年统计数据
import pandas as pd
data=pd.read_excel('5\TB201812.xls',usecols=['订单创建时间','总金额'])
data['订单创建时间']=pd.to_datetime(data['订单创建时间'])
data=data.set_index('订单创建时间')
print(data.resample('w').sum())
print(data.resample('m').sum())
print(data.resample('Q').sum())
print(data.resample('AS').sum())


使用to_period()方法 优化
按月、季度和年显示数据(不统计数据)
import pandas as pd
data=pd.read_excel('5\TB201812.xls',usecols=['订单创建时间','总金额'])
data['订单创建时间']=pd.to_datetime(data['订单创建时间'])
data=data.set_index('订单创建时间')
print(data.resample('w').sum().to_period('w'))
print(data.resample('m').sum().to_period('m'))
print(data.resample('q').sum().to_period('q'))
print(data.resample('as').sum().to_period('a'))


与之前相比 日期的显示方式发生了改变
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
PyQt提供了一个设计良好的窗口控件集合,具有更方便的操作性。学过VB的同学会知道,相比与VB的使用,在界面设计上元素更丰富,这篇文章主要介绍了基于PyQt5完成的图转文功能,需要的朋友可以参考下
这篇文章给大家分享的是有关python怎样做一个简单的搜索引擎的内容,这也是很多学习python的朋友比较感兴趣的一个内容,因此分享一个实例给大家做个参考,一起跟随小编看看吧。
这篇文章介绍了Python中的协程(Coroutine)操作模块(greenlet、gevent),文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
Python由荷兰数学和计算机科学研究学会 于1990 年代初设计,作为一门叫做ABC语言的替代品。Python语法和动态类型,以及解释型语言的本质,使它成为多数平台上写脚本和快速开发应用的编程语言
这篇文章主要介绍了python数据结构之搜索讲解,搜索是指从元素集合中找到某个特定元素的算法过程。搜索过程通常返回 True 或 False, 分别表示元素是否存在,下面一起来了解文章的详细内容吧,希望对你有所帮助
成为群英会员,开启智能安全云计算之旅
立即注册Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008