Python异步编程是什么,有何用处
Admin 2022-05-24 群英技术资讯 971 次浏览
今天就跟大家聊聊有关“Python异步编程是什么,有何用处”的内容,可能很多人都不太了解,为了让大家认识和更进一步的了解,小编给大家总结了以下内容,希望这篇“Python异步编程是什么,有何用处”文章能对大家有帮助。异步编程是一种并发编程的模式,其关注点是通过调度不同任务之间的执行和等待时间,通过减少处理器的闲置时间来达到减少整个程序的执行时间;异步编程跟同步编程模型最大的不同就是其任务的切换,当遇到一个需要等待长时间执行的任务的时候,我们可以切换到其他的任务执行;
与多线程和多进程编程模型相比,异步编程只是在同一个线程之内的的任务调度,无法充分利用多核CPU的优势,所以特别适合IO阻塞性任务;
python 版本 3.9.5
python提供了asyncio模块来支持异步编程,其中涉及到coroutines、event loops、futures三个重要概念;
event loops主要负责跟踪和调度所有异步任务,编排具体的某个时间点执行的任务;
coroutines是对具体执行任务的封装,是一个可以在执行中暂停并切换到event loops执行流程的特殊类型的函数;其一般还需要创建task才能被event loops调度;
futures负责承载coroutines的执行结果,其随着任务在event loops中的初始化而创建,并随着任务的执行来记录任务的执行状态;
异步编程框架的整个执行过程涉及三者的紧密协作;
首先事件循环启动之后,会从任务队列获取第一个要执行的coroutine,并随之创建对应task和future;
然后随着task的执行,当遇到coroutine内部需要切换任务的地方,task的执行就会暂停并释放执行线程给event loop,event loop接着会获取下一个待执行的coroutine,并进行相关的初始化之后,执行这个task;
随着event loop执行完队列中的最后一个coroutine才会切换到第一个coroutine;
随着task的执行结束,event loops会将task清除出队列,对应的执行结果会同步到future中,这个过程会持续到所有的task执行结束;

每个任务执行中间会暂停给定的时间,循序执行的时间就是每个任务执行的时间加和;
import time
def count_down(name, delay):
indents = (ord(name) - ord('A')) * '\t'
n = 3
while n:
time.sleep(delay)
duration = time.perf_counter() - start
print('-' * 40)
print(f'{duration:.4f} \t{indents}{name} = {n}')
n -= 1
start = time.perf_counter()
count_down('A', 1)
count_down('B', 0.8)
count_down('C', 0.5)
print('-' * 40)
print('Done')
# ----------------------------------------
# 1.0010 A = 3
# ----------------------------------------
# 2.0019 A = 2
# ----------------------------------------
# 3.0030 A = 1
# ----------------------------------------
# 3.8040 B = 3
# ----------------------------------------
# 4.6050 B = 2
# ----------------------------------------
# 5.4059 B = 1
# ----------------------------------------
# 5.9065 C = 3
# ----------------------------------------
# 6.4072 C = 2
# ----------------------------------------
# 6.9078 C = 1
# ----------------------------------------
# Done
python在语法上提供了async、await两个关键字来简化将同步代码修改为异步;
async使用在函数的def关键字前边,标记这是一个coroutine函数;
await用在conroutine里边,用于标记需要暂停释放执行流程给event loops;
await 后边的表达式需要返回waitable的对象,例如conroutine、task、future等;
asyncio模块主要提供了操作event loop的方式;
我们可以通过async将count_down标记为coroutine,然后使用await和asyncio.sleep来实现异步的暂停,从而将控制权交给event loop;
async def count_down(name, delay, start):
indents = (ord(name) - ord('A')) * '\t'
n = 3
while n:
await asyncio.sleep(delay)
duration = time.perf_counter() - start
print('-' * 40)
print(f'{duration:.4f} \t{indents}{name} = {n}')
n -= 1
我们定义一个异步的main方法,主要完成task的创建和等待任务执行结束;
async def main():
start = time.perf_counter()
tasks = [asyncio.create_task(count_down(name,delay,start)) for name, delay in [('A', 1),('B', 0.8),('C', 0.5)]]
await asyncio.wait(tasks)
print('-' * 40)
print('Done')
执行我们可以看到时间已经变为了执行时间最长的任务的时间了;
asyncio.run(main()) # ---------------------------------------- # 0.5010 C = 3 # ---------------------------------------- # 0.8016 B = 3 # ---------------------------------------- # 1.0011 A = 3 # ---------------------------------------- # 1.0013 C = 2 # ---------------------------------------- # 1.5021 C = 1 # ---------------------------------------- # 1.6026 B = 2 # ---------------------------------------- # 2.0025 A = 2 # ---------------------------------------- # 2.4042 B = 1 # ---------------------------------------- # 3.0038 A = 1 # ---------------------------------------- # Done
异步编程要求具体的任务必须是coroutine,也就是要求方法是异步的,否则只有任务执行完了,才能将控制权释放给event loop;
python中的concurent.futures提供了ThreadPoolExecutor和ProcessPoolExecutor,可以直接在异步编程中使用,从而可以在单独的线程或者进程至今任务;
import time
import asyncio
from concurrent.futures import ThreadPoolExecutor
def count_down(name, delay, start):
indents = (ord(name) - ord('A')) * '\t'
n = 3
while n:
time.sleep(delay)
duration = time.perf_counter() - start
print('-'*40)
print(f'{duration:.4f} \t{indents}{name} = {n}')
n -=1
async def main():
start = time.perf_counter()
loop = asyncio.get_running_loop()
executor = ThreadPoolExecutor(max_workers=3)
fs = [
loop.run_in_executor(executor, count_down, *args) for args in [('A', 1, start), ('B', 0.8, start), ('C', 0.5, start)]
]
await asyncio.wait(fs)
print('-'*40)
print('Done.')
asyncio.run(main())
# ----------------------------------------
# 0.5087 C = 3
# ----------------------------------------
# 0.8196 B = 3
# ----------------------------------------
# 1.0073 A = 3
# ----------------------------------------
# 1.0234 C = 2
# ----------------------------------------
# 1.5350 C = 1
# ----------------------------------------
# 1.6303 B = 2
# ----------------------------------------
# 2.0193 A = 2
# ----------------------------------------
# 2.4406 B = 1
# ----------------------------------------
# 3.0210 A = 1
# ----------------------------------------
# Done.
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
内容介绍一,登录邮箱,获取授权码二,替换参数总结一,登录邮箱,获取授权码二,替换参数给多人发送邮箱,我只是做了个循环,把每个人得授权码循环输入了。把授权码和邮箱替换成自己得就行,内容你可以自己定义im
yaml是Python的第三方库。YAML is a human friendly data serialization standard for all programming languages(YAML是一个对所有编程语言都很友好的数据序列化标准)。
内容介绍opencv灰度图和彩色图互相转换注意:附:python将灰度图转换为RGB彩色图总结opencv灰度图和彩色图互相转换如果摄像头本来就得到3维度红外图那就不用处理直接可以用:importc
这篇文章主要介绍了python并发场景锁的使用方法,文章围绕主题展开详细的内容介绍,具有一定的参考价值,需要的小伙伴可以参考一下
在日常工作编程中存在着各种随机事件,同样在编程中生成随机数字的时候也是一样,随机有多随机呢?在涉及信息安全的情况下,它是最重要的问题之一。每当在 Python 中生成随机数据、字符串或数字时,最好至少大致了解这些数据是如何生成的。用于在 Python 中生成随机数据的不同选项,然后在安全性、多功能性、用途和速度方面对每个选项进行比较。本篇内容不是数学或密码学相关内容,仅仅是根据需要进行尽可能多的数学运算仅此而已。
成为群英会员,开启智能安全云计算之旅
立即注册关注或联系群英网络
7x24小时售前:400-678-4567
7x24小时售后:0668-2555666
24小时QQ客服
群英微信公众号
CNNIC域名投诉举报处理平台
服务电话:010-58813000
服务邮箱:service@cnnic.cn
投诉与建议:0668-2555555
Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008