pytorch使用多进程加载训练数据集过程报错怎么办
Admin 2022-07-30 群英技术资讯 996 次浏览
在实际应用中,我们有时候会遇到“pytorch使用多进程加载训练数据集过程报错怎么办”这样的问题,我们该怎样来处理呢?下文给大家介绍了解决方法,希望这篇“pytorch使用多进程加载训练数据集过程报错怎么办”文章能帮助大家解决问题。pytorch中尝试用多进程加载训练数据集,源码如下:
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4, shuffle=True, num_workers=3)
结果报错:
RuntimeError:
An attempt has been made to start a new process before the
current process has finished its bootstrapping phase.This probably means that you are not using fork to start your
child processes and you have forgotten to use the proper idiom
in the main module:if __name__ == '__main__':
freeze_support()
...The "freeze_support()" line can be omitted if the program
is not going to be frozen to produce an executable.
从报错信息可以看到,当前进程在运行可执行代码时,产生了一个新进程。这可能意味着您没有使用fork来启动子进程或者是未在主模块中正确使用。
后来经过查阅发现了原因,因为windows系统下默认用spawn方法部署多线程,如果代码没有受到__main__模块的保护,新进程都认为是要再次运行的代码,将尝试再次执行与父进程相同的代码,生成另一个进程,依此类推,直到程序崩溃。
把调用多进程的代码放到__main__模块下即可。
if __name__ == '__main__':
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4, shuffle=True, num_workers=3)
补充:pytorch-Dataloader多进程使用出错
使用Dataloader进行多进程数据导入训练时,会因为多进程的问题而出错
dataloader = DataLoader(transformed_dataset, batch_size=4,shuffle=True, num_workers=4)
其中参数num_works=表示载入数据时使用的进程数,此时如果参数的值不为0而使用多进程时会出现报错
RuntimeError: An attempt has been made to start a new process before the current process has finished its bootstrapping phase. This probably means that you are not using fork to start your child processes and you have forgotten to use the proper idiom in the main module: if __name__ == '__main__': freeze_support() ... The "freeze_support()" line can be omitted if the program is not going to be frozen to produce an executable.
此时在数据的调用之前加上if __name__ == '__main__':即可解决问题
if __name__ == '__main__':#这个地方可以解决多线程的问题
for i_batch, sample_batched in enumerate(dataloader):
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
最近项目中需要处理和分析NC数据,所以下面这篇文章主要给大家介绍了关于python读取nc数据并绘图的相关资料,文中通过实例代码介绍的非常详细,需要的朋友可以参考下
1.abs()函数返回数字的绝对值。print(abs(-45))#返回45print("abs(0.2):",abs(0.2))#返回abs(0.2):0.2 2. all()函数用于判断给定的参数中的所有元素是否都为TRUE,如果是返回True,否则返回False。元素除了是0、空、None、False
随着现在短视频类越来越火,随之而来的就是大量的视频图像的处理。这篇文章主要为大家介绍了Python如何一键实现图像压缩和图像处理,希望对你们有所帮助
1 一致性的建议打破一条既定规则的两个好理由当应用这个规则将导致代码可读性下降,即使对于某人来说他已经习惯于按照这条规则来阅读代码
这篇文章主要为大家介绍了python密码学RSA算法及秘钥创建教程,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
成为群英会员,开启智能安全云计算之旅
立即注册关注或联系群英网络
7x24小时售前:400-678-4567
7x24小时售后:0668-2555666
24小时QQ客服
群英微信公众号
CNNIC域名投诉举报处理平台
服务电话:010-58813000
服务邮箱:service@cnnic.cn
投诉与建议:0668-2555555
Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 ICP核准(ICP备案)粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008