用Python读取nc文件的代码是什么
Admin 2022-09-03 群英技术资讯 884 次浏览
今天小编跟大家讲解下有关“用Python读取nc文件的代码是什么”的内容 ,相信小伙伴们对这个话题应该有所关注吧,小编也收集到了相关资料,希望小伙伴们看了有所帮助。from netCDF4 import Dataset
import numpy as np
import pandas as pd
import os
import matplotlib.pyplot as plt
path = "F:\\OCO2.SIF.all.daily.2001.nc"
csv_path = "F:\\test.csv"
dst = Dataset(path, mode='r', format="netCDF4")
print(dst.variables.keys())
data = dst.variables['all_daily_sif'][:]
print(data.shape)
# 输出结果如下:
# dict_keys(['lat', 'lon', 'doy', 'all_daily_sif'])
# (92, 360, 720)
#可见有92个时间序列,经度(lon)、纬度(lat)的取值有720,360个
# # 查看数据经纬度范围,经度-179.75~179.75,其中负值为西经,正值为东经;纬度正为北纬,负为南纬
# # 格点分辨率为0.5度
long = dst.variables['lon'][:]
lati = dst.variables['lat'][:]
print(long[0], long[-1], lati[0], lati[-1])
print(long.shape, lati.shape)
参考文献1
# plt对某个doy的全球sif值作图。左半部分为西半球,右边是东半球
# 选了doy为10的sif数据作图
plt.contourf(long, lati, data[10, :, :] )
plt.colorbar(label="Sif", orientation="horizontal")
plt.show()
运行结果:

参考文献2
from mpl_toolkits.basemap import Basemap
import matplotlib.pyplot as plt
lat = dst.variables['lat'][:]
lon = dst.variables['lon'][:]
data = dst.variables['all_daily_sif'][:]
data[10] = data[10]
# use .shape function to check that arrays have
# the correct size.
# e.g. lon.shape
print(data[10].shape)
lon0 = lon.mean()
lat0 = lat.mean()
# 设置投影方式:cyl为圆柱投影、还可设置merc为mercator投影 llcrnrlat为起始lat;urcrnrlat为终止lat
# m = Basemap(projection='merc', llcrnrlat=lat[0], urcrnrlat=lat[-1], \
# llcrnrlon=lon[0], urcrnrlon=lon[-1], ax=ax1)
# 参数 "resolution" 用于控制地图面积边缘的精细程度,有'l'和'h'两种取值
m = Basemap(lat_0=lat0, lon_0=lon0,projection='cyl',resolution='l')
# 绘制等经纬度线 纬度每隔20度画一条线,且标注经纬度
m.drawparallels(np.arange(-90., 91., 20.), labels=[1, 0, 0, 0], fontsize=10)
m.drawmeridians(np.arange(-180., 181., 40.), labels=[0, 0, 0, 1], fontsize=10)
m.drawcoastlines()# 绘制海岸线
# m.drawcountries(linewidth=0.25) # 绘制国界线
# m.readshapefile('F:\E\data\grass_yield\shp\quhua\\省', 'states') # 读取中国各省边界,并绘图
lon, lat = np.meshgrid(lon, lat)
xi, yi = m(lon, lat)
# cmap是颜色,还可选‘jet'、‘spring'、‘winter'、'summer'、'autumn'
cs = m.contourf(xi, yi, data[10], cmap='summer')
# pad指位置,
cbar = m.colorbar(cs, location='bottom', pad="10%",format='%.1f')
# cbar = m.colorbar(C, 'right', ticks=np.arange(-128, 128, 40), format='%.1f')
font1 = {'family': 'DejaVu Sans', 'weight': 'normal', 'size': 16}
plt.title('CSIF', font1)
plt.show()
运行效果:

参考文献3
此前 Python 最常用的地图包是 Basemap,然而它将于 2020 年被弃用,官方推荐使用 Cartopy 包作为替代。Cartopy 是英国气象局开发的地图绘图包,实现了 Basemap 的大部分功能,还可以通过 Matplotlib 的 API 实现丰富的自定义效果。
安装Cartopy包
下载安装OSGeo4W4
参考文献:https://zhuanlan.zhihu.com/p/129351199
参考文献:https://blog.csdn.net/weixin_39618339的plt画图像图例的位置怎么写代码_用basemap画气象图
参考文献: https://zhajiman.github.io/
https://trac.osgeo.org/osgeo4w/
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
用Python处理数据,然后用Folium将它在Leaflet地图上进行可视化。Folium能够将通过Python处理后的数据轻松地在交互式的Leaflet地图上进行可视化展示。它不单单可以在地图上展示数据的分布图,还可以使用Vincent/Vega在地图上加以标记。
这篇文章主要为大家详细介绍了Python实现FIFO(先进先出)缓存置换算法,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
Python提供了许多操作Excel的模块,能够让我们从繁琐的工作中腾出双手。本文主要为大家介绍的是openpyxl模块,它的功能相对与其他模块更为齐全,感兴趣的小伙伴快来学习一下吧
大家都知道数组array是同类型数据的有限集合,列表list是一系列按特定顺序排列的元素组成,可以将任何数据放入列表,且其中元素之间没有任何关系,本文介绍python中数组array和列表list的基本用法及区别,感兴趣的朋友一起看看吧
这篇文章主要介绍了django写单元测试的方法,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
成为群英会员,开启智能安全云计算之旅
立即注册关注或联系群英网络
7x24小时售前:400-678-4567
7x24小时售后:0668-2555666
24小时QQ客服
群英微信公众号
CNNIC域名投诉举报处理平台
服务电话:010-58813000
服务邮箱:service@cnnic.cn
投诉与建议:0668-2555555
Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008