RSA算法有哪些特征,怎样才能用RSA算法
Admin 2022-08-19 群英技术资讯 1283 次浏览
在实际应用中,我们有时候会遇到“RSA算法有哪些特征,怎样才能用RSA算法”这样的问题,我们该怎样来处理呢?下文给大家介绍了解决方法,希望这篇“RSA算法有哪些特征,怎样才能用RSA算法”文章能帮助大家解决问题。RSA算法是一种公钥加密技术,被认为是最安全的加密方式.它是由Rivest,Shamir和Adleman于1978年发明的,因此命名为 RSA 算法.
RSA算法具有以下特征 :
您必须完成以下步骤才能工作关于RSA算法 :
初始过程从选择两个素数即p和q开始,然后计算他们的产品N,如图所示去;
N = p * q
这里,设N为指定的大数.
将数字e视为派生数,该数字应大于1且小于(p-1)和(q-1).主要条件是应该没有(p-1)和(q-1)的公因子,除了1
指定的一对数字 n 和 e 形成RSA公钥并将其公开.
私钥 d 是根据数字p,q和e计算的.数字之间的数学关系如下:
ed = 1 mod(p-1)(q-1)
上面的公式是扩展欧几里得算法的基本公式,它以p和q作为输入参数.
考虑将明文消息发送给公钥为(n,e)的人的发件人.要在给定方案中加密纯文本消息,请使用以下语法 :
C = Pe mod n
解密过程非常简单,包括用于系统方法计算的分析.考虑到接收器 C 具有私钥 d ,结果模数将计算为 :
Plaintext = Cd mod n
我们将重点介绍使用Python逐步实现RSA算法.
涉及以下步骤生成RSA密钥 :
我们需要两个主要算法来使用Python和minus生成RSA密钥; Cryptomath模块和 Rabin Miller模块.
cryptomath的源代码遵循RSA算法的所有基本实现的模块如下
def gcd(a, b): while a != 0: a, b = b % a, a return b def findModInverse(a, m): if gcd(a, m) != 1: return None u1, u2, u3 = 1, 0, a v1, v2, v3 = 0, 1, m while v3 != 0: q = u3 // v3 v1, v2, v3, u1, u2, u3 = (u1 - q * v1), (u2 - q * v2), (u3 - q * v3), v1, v2, v3 return u1 % m
源代码遵循RSA算法的所有基本实现的RabinMiller模块如下<
import random def rabinMiller(num): s = num - 1 t = 0 while s % 2 == 0: s = s // 2 t += 1 for trials in range(5): a = random.randrange(2, num - 1) v = pow(a, s, num) if v != 1: i = 0 while v != (num - 1): if i == t - 1: return False else: i = i + 1 v = (v ** 2) % num return True def isPrime(num): if (num 7< 2): return False lowPrimes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313,317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997] if num in lowPrimes: return True for prime in lowPrimes: if (num % prime == 0): return False return rabinMiller(num) def generateLargePrime(keysize = 1024): while True: num = random.randrange(2**(keysize-1), 2**(keysize)) if isPrime(num): return num
import random, sys, os, rabinMiller, cryptomath
def main():
makeKeyFiles('RSA_demo', 1024)
def generateKey(keySize):
# Step 1: Create two prime numbers, p and q. Calculate n = p * q.
print('Generating p prime...')
p = rabinMiller.generateLargePrime(keySize)
print('Generating q prime...')
q = rabinMiller.generateLargePrime(keySize)
n = p * q
# Step 2: Create a number e that is relatively prime to (p-1)*(q-1).
print('Generating e that is relatively prime to (p-1)*(q-1)...')
while True:
e = random.randrange(2 ** (keySize - 1), 2 ** (keySize))
if cryptomath.gcd(e, (p - 1) * (q - 1)) == 1:
break
# Step 3: Calculate d, the mod inverse of e.
print('Calculating d that is mod inverse of e...')
d = cryptomath.findModInverse(e, (p - 1) * (q - 1))
publicKey = (n, e)
privateKey = (n, d)
print('Public key:', publicKey)
print('Private key:', privateKey)
return (publicKey, privateKey)
def makeKeyFiles(name, keySize):
# Creates two files 'x_pubkey.txt' and 'x_privkey.txt'
(where x is the value in name) with the the n,e and d,e integers written in them,
# delimited by a comma.
if os.path.exists('%s_pubkey.txt' % (name)) or os.path.exists('%s_privkey.txt' % (name)):
sys.exit('WARNING: The file %s_pubkey.txt or %s_privkey.txt already exists! Use a different name or delete these files and re-run this program.' % (name, name))
publicKey, privateKey = generateKey(keySize)
print()
print('The public key is a %s and a %s digit number.' % (len(str(publicKey[0])), len(str(publicKey[1]))))
print('Writing public key to file %s_pubkey.txt...' % (name))
fo = open('%s_pubkey.txt' % (name), 'w')
fo.write('%s,%s,%s' % (keySize, publicKey[0], publicKey[1]))
fo.close()
print()
print('The private key is a %s and a %s digit number.' % (len(str(publicKey[0])), len(str(publicKey[1]))))
print('Writing private key to file %s_privkey.txt...' % (name))
fo = open('%s_privkey.txt' % (name), 'w')
fo.write('%s,%s,%s' % (keySize, privateKey[0], privateKey[1]))
fo.close()
# If makeRsaKeys.py is run (instead of imported as a module) call
# the main() function.
if __name__ == '__main__':
main()
输出
生成公钥和私钥并将其保存在相应的文件中,如以下输出所示.

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
问题场景:问题描述原因分析及解决方案:问题场景:在SparkSQL中,因为需要用到自定义的UDAF函数,所以用pyspark自定义了一个,但是遇到了一个问题,就是自定义的UDAF函数一直报Attri
django中get和filter的区别在哪?get()和filter()方法都是比较常用的,但是很多新手对于get和filter的区别不是很清楚,对此,这篇文章就主要给大家简单的介绍一下get和filter的不同,感兴趣的朋友就继续往下看吧。
ord() 函数是 chr() 函数(对于 8 位的 ASCII 字符串)的配对函数,它以一个字符串(Unicode 字符)作为参数,返回对应的 ASCII 数值,或者 Unicode 数值,这篇文章主要介绍了python 中内置函数ord()返回字符串的ASCII数值,需要的朋友可以参考下
本文主要介绍的python排序算法的实现,下本有冒泡排序、选择排序、插入排序、快速排序这四种排序的算法实现步骤以及实现的介绍,和四种算法实现的比较,具有一定的参考价值。下面一起跟随小编看看吧。
接口自动化是指模拟程序接口层面的自动化,由于接口不易变更,维护成本更小,所以深受各大公司的喜爱,本文主要介绍了Pytest+request+Allure实现接口自动化框架,感兴趣的可以了解一下
成为群英会员,开启智能安全云计算之旅
立即注册关注或联系群英网络
7x24小时售前:400-678-4567
7x24小时售后:0668-2555666
24小时QQ客服
群英微信公众号
CNNIC域名投诉举报处理平台
服务电话:010-58813000
服务邮箱:service@cnnic.cn
投诉与建议:0668-2555555
Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 ICP核准(ICP备案)粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008