Python中求图片数据集均值方差的代码是什么
Admin 2022-08-24 群英技术资讯 958 次浏览
在实际应用中,我们有时候会遇到“Python中求图片数据集均值方差的代码是什么”这样的问题,我们该怎样来处理呢?下文给大家介绍了解决方法,希望这篇“Python中求图片数据集均值方差的代码是什么”文章能帮助大家解决问题。(做这个之前一定保证所有的图片都是统一尺寸,不然算出来不对,我的代码里设计的是512*512,可以自己调整,同一尺寸的代码我也有:
# -*- coding: utf-8 -*-
"""
Created on Thu Aug 23 16:06:35 2018
@author: libo
"""
from PIL import Image
import os
def image_resize(image_path, new_path): # 统一图片尺寸
print('============>>修改图片尺寸')
for img_name in os.listdir(image_path):
img_path = image_path + "/" + img_name # 获取该图片全称
image = Image.open(img_path) # 打开特定一张图片
image = image.resize((512, 512)) # 设置需要转换的图片大小
# process the 1 channel image
image.save(new_path + '/'+ img_name)
print("end the processing!")
if __name__ == '__main__':
print("ready for :::::::: ")
ori_path = r"Z:\pycharm_projects\ssd\VOC2007\JPEGImages" # 输入图片的文件夹路径
new_path = 'Z:/pycharm_projects/ssd/VOC2007/reshape' # resize之后的文件夹路径
image_resize(ori_path, new_path)
import os
from PIL import Image
import matplotlib.pyplot as plt
import numpy as np
from scipy.misc import imread
filepath = r'Z:\pycharm_projects\ssd\VOC2007\reshape' # 数据集目录
pathDir = os.listdir(filepath)
R_channel = 0
G_channel = 0
B_channel = 0
for idx in range(len(pathDir)):
filename = pathDir[idx]
img = imread(os.path.join(filepath, filename)) / 255.0
R_channel = R_channel + np.sum(img[:, :, 0])
G_channel = G_channel + np.sum(img[:, :, 1])
B_channel = B_channel + np.sum(img[:, :, 2])
num = len(pathDir) * 512 * 512 # 这里(512,512)是每幅图片的大小,所有图片尺寸都一样
R_mean = R_channel / num
G_mean = G_channel / num
B_mean = B_channel / num
R_channel = 0
G_channel = 0
B_channel = 0
for idx in range(len(pathDir)):
filename = pathDir[idx]
img = imread(os.path.join(filepath, filename)) / 255.0
R_channel = R_channel + np.sum((img[:, :, 0] - R_mean) ** 2)
G_channel = G_channel + np.sum((img[:, :, 1] - G_mean) ** 2)
B_channel = B_channel + np.sum((img[:, :, 2] - B_mean) ** 2)
R_var = np.sqrt(R_channel / num)
G_var = np.sqrt(G_channel / num)
B_var = np.sqrt(B_channel / num)
print("R_mean is %f, G_mean is %f, B_mean is %f" % (R_mean, G_mean, B_mean))
print("R_var is %f, G_var is %f, B_var is %f" % (R_var, G_var, B_var))
可能有点慢,慢慢等着就行。。。。。。。
最后得到的结果是介个

import os
from PIL import Image
import matplotlib.pyplot as plt
import numpy as np
from scipy.misc import imread
filepath = ‘/home/JPEGImages‘ # 数据集目录
pathDir = os.listdir(filepath)
R_channel = 0
G_channel = 0
B_channel = 0
for idx in xrange(len(pathDir)):
filename = pathDir[idx]
img = imread(os.path.join(filepath, filename))
R_channel = R_channel + np.sum(img[:,:,0])
G_channel = G_channel + np.sum(img[:,:,1])
B_channel = B_channel + np.sum(img[:,:,2])
num = len(pathDir) * 384 * 512 # 这里(384,512)是每幅图片的大小,所有图片尺寸都一样
R_mean = R_channel / num
G_mean = G_channel / num
B_mean = B_channel / num
R_channel = 0 G_channel = 0 B_channel = 0
for idx in xrange(len(pathDir)):
filename = pathDir[idx]
img = imread(os.path.join(filepath, filename))
R_channel = R_channel + np.sum((img[:,:,0] - R_mean)**2)
G_channel = G_channel + np.sum((img[:,:,1] - G_mean)**2)
B_channel = B_channel + np.sum((img[:,:,2] - B_mean)**2)
R_var = R_channel / num
G_var = G_channel / num
B_var = B_channel / num
print("R_mean is %f, G_mean is %f, B_mean is %f" % (R_mean, G_mean, B_mean))
print("R_var is %f, G_var is %f, B_var is %f" % (R_var, G_var, B_var))
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
玫瑰花图是节理统计方式之一,方法简便,形象醒目,比较清楚地反映出主要节理的方向,有助于分析区域构造。本文将用Python绘制好看的玫瑰花图,感兴趣的可以了解一下
pytorch作为深度学习的计算框架正得到越来越多的应用.我们除了在模型训练阶段应用外,最近也把pytorch应用在了部署上.
这篇文章主要为大家介绍了Pytorch搭建SRGAN平台提升图片超分辨率,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
这周五就是520,大家都准备好送给女朋友的礼物了吗?快来利用Python编写个表白代码送给她吧!文中示例代码讲解详细,跟随小编一起动手试一试吧
这篇文章主要介绍了Python Opencv中基础的知识点,主要包括创建窗口、保存图片、采集视频、鼠标控制的代码,代码简单易懂,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
成为群英会员,开启智能安全云计算之旅
立即注册关注或联系群英网络
7x24小时售前:400-678-4567
7x24小时售后:0668-2555666
24小时QQ客服
群英微信公众号
CNNIC域名投诉举报处理平台
服务电话:010-58813000
服务邮箱:service@cnnic.cn
投诉与建议:0668-2555555
Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 ICP核准(ICP备案)粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008