用Python如何实现多种样式的直方图统计效果
Admin 2022-06-09 群英技术资讯 1054 次浏览
这篇文章给大家介绍了“用Python如何实现多种样式的直方图统计效果”的相关知识,讲解详细,步骤过程清晰,有一定的借鉴学习价值,因此分享给大家做个参考,感兴趣的朋友接下来一起跟随小编看看吧。直方图就是对图像的另外一种解释,它描述了整幅图像的灰度分布。直方图的 x 轴代表灰度值(0~255),y 轴代表图片中同一种灰度值的像素点的数目,所以通过直方图我们可以对图像的亮度、灰度分布、对比度等有了一个直观的认识
BINS
前面说到,直方图中的 x 轴表示的是灰度值,一幅灰度图的灰度等级有 256 级,所以我们是否需要将每一个等级标注在一条轴上呢?或者如果我们需要的不是每一个灰度值的分布,而是一个范围内的灰度分布呢?所以我们将每一个需要的灰度值范围称为一个 BIN,即所有的灰度等级被分为几个小组,每一个小组是一个 BIN
DIMS
代表的是我们收集的图像的参数的数目,直方图我们如果只收集灰度值一个参数,那么该参数的值就是1
RANGE
代表统计的灰度值的范围,一般的范围是[0-255]
在计算机视觉系列的文章中第一件事就是读取图像信息:
"""
Author:XiaoMa
date:2021/10/24
"""
#调用需要的包
import cv2
import matplotlib.pyplot as plt
img0 = cv2.imread('E:\From Zhihu\For the desk\cvseven.jpeg')
img1 = cv2.cvtColor(img0, cv2.COLOR_BGR2GRAY) #转化为灰度图
h, w = img1.shape[:2]
print(h, w)
cv2.namedWindow("W0")
cv2.imshow("W0", img1)
cv2.waitKey(delay = 0)
图像信息如下:
419 636

绘制直方图使用的函数如下:
hist = cv2.calcHist(images, channels, mask, histSize, ranges, accumulate)
images:原图
channels:指定通道 [0]代表灰度图,如果读入的图像不是灰度图,该值可以是[0],[1],[2]分别代表通道 B,G,R
mask:掩码图像,进行整张图的绘制时为 None
histSize:BIN 的数量
ranges:像素值范围
accumulate:累计标识,一般可以省略
灰度图的直方图
#绘制直方图
hist = cv2.calcHist([img1], [0], None, [256], [0, 255])
plt.plot(hist, color = 'lime', label = '直方图', linestyle = '--')
plt.legend()
plt.savefig('E:\From Zhihu\For the desk\cvseven1.jpeg')
plt.show()

可以看出这幅灰度图中亮度较高的像素点还是占多数的,即整体亮度较高
彩色图直方图
读入彩色图像,并对某一个通道进行直方图绘制
"""
Author:XiaoMa
date:2021/10/24
"""
#调用需要的包
import cv2
import matplotlib.pyplot as plt
plt.rcParams['font.family'] = 'SimHei' #将全局中文字体改为黑体
img0 = cv2.imread('E:\From Zhihu\For the desk\cvseven.jpeg')
img1 = cv2.cvtColor(img0, cv2.COLOR_BGR2GRAY)
h, w = img1.shape[:2]
print(h, w)
cv2.namedWindow("W0")
cv2.imshow("W0", img0)
cv2.waitKey(delay = 0)
#绘制直方图
hist = cv2.calcHist([img0], [0], None, [256], [0, 255])
plt.plot(hist, color = 'lime', label = '蓝色通道直方图', linestyle = '--', alpha = 1)
plt.legend()
plt.savefig('E:\From Zhihu\For the desk\cvseven1.jpeg')
plt.show()

上图就是对蓝色通道绘制的直方图
如果我们不需要整幅图像中的直方图,而是某个区域的直方图,我们只需要绘制一幅图,将需要统计的部分设置为白色,不需要统计的部分设置为黑色,就构成了一幅掩膜图像
得到掩模图
##得到掩膜图
mask = np.zeros(img0.shape, np.uint8) #将每一个像素点设置为0,就是黑色
mask[109:309, 212:412] = 255 #选取特定区域设置为白色
img0_1 = cv2.bitwise_and(img0, mask) #图像与操作得到掩膜图
cv2.namedWindow("W1")
cv2.imshow("W1", img0_1)
cv2.waitKey(delay = 0)

绘制掩膜直方图
#绘制掩膜直方图
##得到掩膜图
mask = np.zeros(img1.shape, np.uint8) #将每一个像素点设置为0,就是黑色
mask[109:309, 212:412] = 255 #选取特定区域设置为白色
img1_1 = cv2.bitwise_and(img1, mask) #图像与操作得到掩膜图
cv2.namedWindow("W1")
cv2.imshow("W1", img1_1)
cv2.waitKey(delay = 0)
##绘制掩膜直方图和部分图像直方图
hist1 = cv2.calcHist([img1], [0], mask, [256], [0, 255]) #掩膜图直方图,参数需要修改
hist2 = cv2.calcHist([img1], [0], None, [256], [0,255])
plt.plot(hist1, color = 'b', label = '掩膜直方图', linestyle = '--')
plt.plot(hist2, color = 'r', label = '原图直方图', linestyle = '-.')
plt.legend()
plt.savefig('E:\From Zhihu\For the desk\cvseven2.jpeg')
plt.show()
得到的图像如下:

H(Hue) - S(Saturation) 直方图,即色调 - 饱和度直方图
绘制该直方图需要将源RGB图像转化到 HSV (色调、饱和度、亮度)颜色空间中去
img0_2 = cv2.cvtColor(img0, cv2.COLOR_BGR2HSV) #将 RGB 空间转化为 HSV 空间
cv2.namedWindow("W2")
cv2.imshow("W2", img0_2)
cv2.waitKey(delay = 0)

此处参考:OpenCV 官网
##绘制H-S直方图
hist3 = cv2.calcHist ([img0_2], [0, 1], None , [180, 256], [0, 180, 0, 256])#官网给出的解释:channel = [0,1] 因为我们需要同时处理 H 和 S 平面;bins = [180,256] H 平面为 180,S 平面为 256;range = [0,180,0,256] 色调值介于 0 和 180 之间,饱和度介于 0 和 256 之间
plt.imshow(hist3)
plt.savefig('E:\From Zhihu\For the desk\cvseven3.jpeg')
plt.show()
得到的图像如下:

上图中的 X 轴代表S(饱和度),Y轴代表H(色调)
该图中的峰值主要分布在 S 在(0-50)之间 H在(20-80),至于为什么峰值较少,个人猜测是由于原图中的色彩变化不明显,导致没办法绘制出过多过明显的峰值
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
之前向大家介绍过Python中float() 函数的实现过程。在使用float() 函数时,我们用的字符是浮点数,但是有时我们并不需要浮点数,这时我们就要将float转化为其他形式。本文将介绍Python float 转换为 String的两种方法:使用'%d'%num实现和使用str()方法实现。
这篇文章主要给大家介绍了关于PyCharm调用matplotlib绘图时图像弹出问题的相关资料,文中通过图文介绍的非常详细,对大家学习或者使用PyCharm具有一定的参考学习价值,需要的朋友可以参考下
Python 囊括了大量的复合数据类型,用于接受其它数值。最有用的是列表,即写在方括号之间、用逗号分隔开的数值列表。列表内的数值不必全是相同的类型。
TiKV 集群是 TiDB 数据库的分布式 KV 存储引擎,数据以 Region 为单位进行复制和管理,每个 Region 会有多个 Replica(副本),这些 Replica 会分布在不同的 TiKV 节点上,其中 Leader 负责读/写,Follower 负责同步 Leader 发来的 raft log。了解了这些信息后,请思考下面这些问题:
本文主要介绍了pytorch中transforms的使用详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧<BR>
成为群英会员,开启智能安全云计算之旅
立即注册关注或联系群英网络
7x24小时售前:400-678-4567
7x24小时售后:0668-2555666
24小时QQ客服
群英微信公众号
CNNIC域名投诉举报处理平台
服务电话:010-58813000
服务邮箱:service@cnnic.cn
投诉与建议:0668-2555555
Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 ICP核准(ICP备案)粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008