Python中queue分类有几种,怎样实现多线程通信
Admin 2022-07-25 群英技术资讯 1102 次浏览
这篇文章给大家介绍了“Python中queue分类有几种,怎样实现多线程通信”的相关知识,讲解详细,步骤过程清晰,有一定的借鉴学习价值,因此分享给大家做个参考,感兴趣的朋友接下来一起跟随小编看看吧。python3 queue分三类:
他们的导入方式分别是:
from queue import Queue from queue import LifoQueue from queue import
具体方法见下面引用说明。
Queue 对象已经包含了必要的锁,所以你可以通过它在多个线程间多安全地共享数据。 当使用队列时,协调生产者和消费者的关闭问题可能会有一些麻烦。一个通用的解决方法是在队列中放置一个特殊的值,当消费者读到这个值的时候,终止执行。
例如:
from queue import Queue
from threading import Thread
# 用来表示终止的特殊对象
_sentinel = object()
# A thread that produces data
def producer(out_q):
for i in range(10):
print("生产")
out_q.put(i)
out_q.put(_sentinel)
# A thread that consumes data
def consumer(in_q):
while True:
data = in_q.get()
if data is _sentinel:
in_q.put(_sentinel)
break
else:
print("消费", data)
# Create the shared queue and launch both threads
q = Queue()
t1 = Thread(target=consumer, args=(q,))
t2 = Thread(target=producer, args=(q,))
t1.start()
t2.start()
结果:

本例中有一个特殊的地方:消费者在读到这个特殊值之后立即又把它放回到队列中,将之传递下去。这样,所有监听这个队列的消费者线程就可以全部关闭了。 尽管队列是最常见的线程间通信机制,但是仍然可以自己通过创建自己的数据结构并添加所需的锁和同步机制来实现线程间通信。最常见的方法是使用 Condition变量来包装你的数据结构。下边这个例子演示了如何创建一个线程安全的优先级队列。
import heapq import threading class PriorityQueue: def __init__(self): self._queue = [] self._count = 0 self._cv = threading.Condition() def put(self, item, priority): with self._cv: heapq.heappush(self._queue, (-priority, self._count, item)) self._count += 1 self._cv.notify() def get(self): with self._cv: while len(self._queue) == 0: self._cv.wait() return heapq.heappop(self._queue)[-1]
使用队列来进行线程间通信是一个单向、不确定的过程。通常情况下,你没有办法知道接收数据的线程是什么时候接收到的数据并开始工作的。不过队列对象提供一些基本完成的特性,比如下边这个例子中的task_done() 和 join():
from queue import Queue
from threading import Thread
class Producer(Thread):
def __init__(self, q):
super().__init__()
self.count = 5
self.q = q
def run(self):
while self.count > 0:
print("生产")
if self.count == 1:
self.count -= 1
self.q.put(2)
else:
self.count -= 1
self.q.put(1)
class Consumer(Thread):
def __init__(self, q):
super().__init__()
self.q = q
def run(self):
while True:
print("消费")
data = self.q.get()
if data == 2:
print("stop because data=", data)
# 任务完成,从队列中清除一个元素
self.q.task_done()
break
else:
print("data is good,data=", data)
# 任务完成,从队列中清除一个元素
self.q.task_done()
def main():
q = Queue()
p = Producer(q)
c = Consumer(q)
p.setDaemon(True)
c.setDaemon(True)
p.start()
c.start()
# 等待队列清空
q.join()
print("queue is complete")
if __name__ == '__main__':
main()
结果:

设置俩队列,一个是要做的任务队列todo_queue,一个是已经完成的队列done_queue。
每次执行线程,先从todo_queue队列里取出一个值,然后执行完,放入done_queue队列。
如果todo_queue为空,就退出。
import logging
import logging.handlers
import threading
import queue
log_mgr = None
todo_queue = queue.Queue()
done_queue = queue.Queue()
class LogMgr:
def __init__(self, logpath):
self.LOG = logging.getLogger('log')
loghd = logging.handlers.RotatingFileHandler(logpath, "a", 0, 1)
fmt = logging.Formatter("%(asctime)s %(threadName)-10s %(message)s", "%Y-%m-%d %H:%M:%S")
loghd.setFormatter(fmt)
self.LOG.addHandler(loghd)
self.LOG.setLevel(logging.INFO)
def info(self, msg):
if self.LOG is not None:
self.LOG.info(msg)
class Worker(threading.Thread):
global log_mgr
def __init__(self, name):
threading.Thread.__init__(self)
self.name = name
def run(self):
while True:
try:
task = todo_queue.get(False)
if task:
log_mgr.info("HANDLE_TASK: %s" % task)
done_queue.put(1)
except queue.Empty:
break
return
def main():
global log_mgr
log_mgr = LogMgr("mylog")
for i in range(30):
todo_queue.put("data"+str(i))
workers = []
for i in range(3):
w = Worker("worker"+str(i))
workers.append(w)
for i in range(3):
workers[i].start()
for i in range(3):
workers[i].join()
total_num = done_queue.qsize()
log_mgr.info("TOTAL_HANDLE_TASK: %d" % total_num)
exit(0)
if __name__ == '__main__':
main()
输出日志文件结果:

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
有时候我们需要关闭print输出信息,我们可以通过控制sys.stdout来实现print输出的开关一个简单的示例如下:importsysprint(
这篇文章主要为大家介绍了PyTorch搭建LSTM实现多变量多步长时序负荷预测,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
进程,一个新鲜的字眼,可能有些人并不了解,它是系统某个运行程序的载体,这个程序可以有单个或者多个进程,一般来说,进程是通过系统CPU 内核数来分配并设置的,我们可以来看下系统中的进程
今天给大家分享的是Pandas库中的transform函数,我们知道Pandas库有很多很强大的功能,接下来来给大家介绍的transform函数就是其中之一,使用transform函数,我们可以实现高效的汇总数据且不改变数据行数,接下来我们就来详细的了解一下transform函数。
大家好,本篇文章主要讲的是用python画圣诞树三种代码示例介绍,感兴趣的同学赶快来看一看吧,对你有帮助的话记得收藏一下,方便下次浏览
成为群英会员,开启智能安全云计算之旅
立即注册Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008