pytorch禁止计算局部梯度有几种方式,具体怎样做
Admin 2022-06-15 群英技术资讯 1072 次浏览
torch.autogard.no_grad: 禁用梯度计算的上下文管理器。
当确定不会调用Tensor.backward()计算梯度时,设置禁止计算梯度会减少内存消耗。如果需要计算梯度设置Tensor.requires_grad=True
将不用计算梯度的变量放在with torch.no_grad()里
>>> x = torch.tensor([1.], requires_grad=True) >>> with torch.no_grad(): ... y = x * 2 >>> y.requires_grad Out[12]:False
使用装饰器 @torch.no_gard()修饰的函数,在调用时不允许计算梯度
>>> @torch.no_grad() ... def doubler(x): ... return x * 2 >>> z = doubler(x) >>> z.requires_grad Out[13]:False
torch.autogard.enable_grad :允许计算梯度的上下文管理器
在一个no_grad上下文中使能梯度计算。在no_grad外部此上下文管理器无影响.
使用with torch.enable_grad()允许计算梯度
>>> x = torch.tensor([1.], requires_grad=True) >>> with torch.no_grad(): ... with torch.enable_grad(): ... y = x * 2 >>> y.requires_grad Out[14]:True >>> y.backward() # 计算梯度 >>> x.grad Out[15]: tensor([2.])
在禁止计算梯度下调用被允许计算梯度的函数,结果可以计算梯度
>>> @torch.enable_grad() ... def doubler(x): ... return x * 2 >>> with torch.no_grad(): ... z = doubler(x) >>> z.requires_grad Out[16]:True
torch.autograd.set_grad_enable()
可以作为一个函数使用:
>>> x = torch.tensor([1.], requires_grad=True) >>> is_train = False >>> with torch.set_grad_enabled(is_train): ... y = x * 2 >>> y.requires_grad Out[17]:False >>> torch.set_grad_enabled(True) >>> y = x * 2 >>> y.requires_grad Out[18]:True >>> torch.set_grad_enabled(False) >>> y = x * 2 >>> y.requires_grad Out[19]:False
单独使用这三个函数时没有什么,但是若是嵌套,遵循就近原则。
x = torch.tensor([1.], requires_grad=True) with torch.enable_grad(): torch.set_grad_enabled(False) y = x * 2 print(y.requires_grad) Out[20]: False torch.set_grad_enabled(True) with torch.no_grad(): z = x * 2 print(z.requires_grad) Out[21]:False
补充:pytorch局部范围内禁用梯度计算,no_grad、enable_grad、set_grad_enabled使用举例
Locally disabling gradient computation 在局部区域内关闭(禁用)梯度的计算. The context managers torch.no_grad(), torch.enable_grad(), and torch.set_grad_enabled() are helpful for locally disabling and enabling gradient computation. See Locally disabling gradient computation for more details on their usage. These context managers are thread local, so they won't work if you send work to another thread using the threading module, etc. 上下文管理器torch.no_grad()、torch.enable_grad()和 torch.set_grad_enabled()可以用来在局部范围内启用或禁用梯度计算. 在Locally disabling gradient computation章节中详细介绍了 局部禁用梯度计算的使用方式.这些上下文管理器具有线程局部性, 因此,如果你使用threading模块来将工作负载发送到另一个线程, 这些上下文管理器将不会起作用. no_grad Context-manager that disabled gradient calculation. no_grad 用于禁用梯度计算的上下文管理器. enable_grad Context-manager that enables gradient calculation. enable_grad 用于启用梯度计算的上下文管理器. set_grad_enabled Context-manager that sets gradient calculation to on or off. set_grad_enabled 用于设置梯度计算打开或关闭状态的上下文管理器.
Microsoft Windows [版本 10.0.18363.1440] (c) 2019 Microsoft Corporation。保留所有权利。 C:\Users\chenxuqi>conda activate pytorch_1.7.1_cu102 (pytorch_1.7.1_cu102) C:\Users\chenxuqi>python Python 3.7.9 (default, Aug 31 2020, 17:10:11) [MSC v.1916 64 bit (AMD64)] :: Anaconda, Inc. on win32 Type "help", "copyright", "credits" or "license" for more information. >>> import torch >>> torch.manual_seed(seed=20200910) <torch._C.Generator object at 0x000001A2E55A8870> >>> a = torch.randn(3,4,requires_grad=True) >>> a tensor([[ 0.2824, -0.3715, 0.9088, -1.7601], [-0.1806, 2.0937, 1.0406, -1.7651], [ 1.1216, 0.8440, 0.1783, 0.6859]], requires_grad=True) >>> b = a * 2 >>> b tensor([[ 0.5648, -0.7430, 1.8176, -3.5202], [-0.3612, 4.1874, 2.0812, -3.5303], [ 2.2433, 1.6879, 0.3567, 1.3718]], grad_fn=<MulBackward0>) >>> b.requires_grad True >>> b.grad __main__:1: UserWarning: The .grad attribute of a Tensor that is not a leaf Tensor is being accessed. Its .grad attribute won't be populated during autograd.backward(). If you indeed want the gradient for a non-leaf Tensor, use .retain_grad() on the non-leaf Tensor. If you access the non-leaf Tensor by mistake, make sure you access the leaf Tensor instead. See github.com/pytorch/pytorch/pull/30531 for more informations. >>> print(b.grad) None >>> a.requires_grad True >>> a.grad >>> print(a.grad) None >>> >>> with torch.no_grad(): ... c = a * 2 ... >>> c tensor([[ 0.5648, -0.7430, 1.8176, -3.5202], [-0.3612, 4.1874, 2.0812, -3.5303], [ 2.2433, 1.6879, 0.3567, 1.3718]]) >>> c.requires_grad False >>> print(c.grad) None >>> a.grad >>> >>> print(a.grad) None >>> c.sum() tensor(6.1559) >>> >>> c.sum().backward() Traceback (most recent call last): File "<stdin>", line 1, in <module> File "D:\Anaconda3\envs\pytorch_1.7.1_cu102\lib\site-packages\torch\tensor.py", line 221, in backward torch.autograd.backward(self, gradient, retain_graph, create_graph) File "D:\Anaconda3\envs\pytorch_1.7.1_cu102\lib\site-packages\torch\autograd\__init__.py", line 132, in backward allow_unreachable=True) # allow_unreachable flag RuntimeError: element 0 of tensors does not require grad and does not have a grad_fn >>> >>> >>> b.sum() tensor(6.1559, grad_fn=<SumBackward0>) >>> b.sum().backward() >>> >>> >>> a.grad tensor([[2., 2., 2., 2.], [2., 2., 2., 2.], [2., 2., 2., 2.]]) >>> a.requires_grad True >>> >>>
Microsoft Windows [版本 10.0.18363.1440] (c) 2019 Microsoft Corporation。保留所有权利。 C:\Users\chenxuqi>conda activate pytorch_1.7.1_cu102 (pytorch_1.7.1_cu102) C:\Users\chenxuqi>python Python 3.7.9 (default, Aug 31 2020, 17:10:11) [MSC v.1916 64 bit (AMD64)] :: Anaconda, Inc. on win32 Type "help", "copyright", "credits" or "license" for more information. >>> import torch >>> torch.manual_seed(seed=20200910) <torch._C.Generator object at 0x000002109ABC8870> >>> >>> a = torch.randn(3,4,requires_grad=True) >>> a tensor([[ 0.2824, -0.3715, 0.9088, -1.7601], [-0.1806, 2.0937, 1.0406, -1.7651], [ 1.1216, 0.8440, 0.1783, 0.6859]], requires_grad=True) >>> a.requires_grad True >>> >>> with torch.set_grad_enabled(False): ... b = a * 2 ... >>> b tensor([[ 0.5648, -0.7430, 1.8176, -3.5202], [-0.3612, 4.1874, 2.0812, -3.5303], [ 2.2433, 1.6879, 0.3567, 1.3718]]) >>> b.requires_grad False >>> >>> with torch.set_grad_enabled(True): ... c = a * 3 ... >>> c tensor([[ 0.8472, -1.1145, 2.7263, -5.2804], [-0.5418, 6.2810, 3.1219, -5.2954], [ 3.3649, 2.5319, 0.5350, 2.0576]], grad_fn=<MulBackward0>) >>> c.requires_grad True >>> >>> d = a * 4 >>> d.requires_grad True >>> >>> torch.set_grad_enabled(True) # this can also be used as a function <torch.autograd.grad_mode.set_grad_enabled object at 0x00000210983982C8> >>> >>> # 以函数调用的方式来使用 >>> >>> e = a * 5 >>> e tensor([[ 1.4119, -1.8574, 4.5439, -8.8006], [-0.9030, 10.4684, 5.2031, -8.8257], [ 5.6082, 4.2198, 0.8917, 3.4294]], grad_fn=<MulBackward0>) >>> e.requires_grad True >>> >>> d tensor([[ 1.1296, -1.4859, 3.6351, -7.0405], [-0.7224, 8.3747, 4.1625, -7.0606], [ 4.4866, 3.3759, 0.7133, 2.7435]], grad_fn=<MulBackward0>) >>> >>> torch.set_grad_enabled(False) # 以函数调用的方式来使用 <torch.autograd.grad_mode.set_grad_enabled object at 0x0000021098394C48> >>> >>> f = a * 6 >>> f tensor([[ 1.6943, -2.2289, 5.4527, -10.5607], [ -1.0836, 12.5621, 6.2437, -10.5908], [ 6.7298, 5.0638, 1.0700, 4.1153]]) >>> f.requires_grad False >>> >>> >>>
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
这篇文章主要介绍了pandas 如何保存数据到excel,csv的实现方式,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
目录1. 何为随机数种子2. np.random.seed()参数问题3. 使用方法4. 随机数种子问题总结前言: 最近在学习过程中总是遇到np.random.seed()这个问题,刚开始总是觉得不过是一个简
pytorch作为深度学习的计算框架正得到越来越多的应用.我们除了在模型训练阶段应用外,最近也把pytorch应用在了部署上.
内容介绍opencv灰度图和彩色图互相转换注意:附:python将灰度图转换为RGB彩色图总结opencv灰度图和彩色图互相转换如果摄像头本来就得到3维度红外图那就不用处理直接可以用:importc
这篇文章主要为大家介绍了python NetworkX库生成并绘制带权无向图的实现示例,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
成为群英会员,开启智能安全云计算之旅
立即注册Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008