pytorch visdom怎样安装,用法是什么?
Admin 2021-11-24 群英技术资讯 1008 次浏览
pytorch Visdom可视化,是一个灵活的工具,用于创建,组织和共享实时丰富数据的可视化。这篇文章我们就来了解pytorch visdom怎样安装,以及visdom的用法,感兴趣的接下来就跟随小编来了解看看吧!
conda activate ps pip install visdom
激活ps的环境,在指定的ps环境中安装visdom
python -m visdom.server

浏览器输入红框内的网址

from visdom import Visdom # 创建一个实例 viz=Visdom() # 创建一个直线,再把最新数据添加到直线上 # y x二维两个轴,win 创建一个小窗口,不指定就默认为大窗口,opts其他信息比如名称 viz.line([1,2,3,4],[1,2,3,4],win="train_loss",opts=dict(title='train_loss')) # 更一般的情况,因为下面y x数据不存在,只是示例 # append 添加到原来的后面,不然全部覆盖掉 # viz.line([loss.item()],[global_step],win="train_loss",update='append')

下面主要是[[y1],[y2]],[x] 两条映射,legend就是线条名称
from visdom import Visdom viz=Visdom() viz.line([[1,2],[5,6]],[1,2],win="loss_acc",opts=dict(title='train loss & acc',legend=['loss','acc']))

from visdom import Visdom viz=Visdom() # data 是一个batch viz.image(data.view(-1,1,28,28),win='x') viz.text(str(pred.datach().cpu().numpy()),win='pred',opts=dict(title='pred'))
动画效果图如下

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from visdom import Visdom
batch_size=200
learning_rate=0.01
epochs=10
train_loader = torch.utils.data.DataLoader(
datasets.MNIST('../data', train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
# transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=batch_size, shuffle=True)
test_loader = torch.utils.data.DataLoader(
datasets.MNIST('../data', train=False, transform=transforms.Compose([
transforms.ToTensor(),
# transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=batch_size, shuffle=True)
class MLP(nn.Module):
def __init__(self):
super(MLP, self).__init__()
self.model = nn.Sequential(
nn.Linear(784, 200),
nn.LeakyReLU(inplace=True),
nn.Linear(200, 200),
nn.LeakyReLU(inplace=True),
nn.Linear(200, 10),
nn.LeakyReLU(inplace=True),
)
def forward(self, x):
x = self.model(x)
return x
device = torch.device('cuda:0')
net = MLP().to(device)
optimizer = optim.SGD(net.parameters(), lr=learning_rate)
criteon = nn.CrossEntropyLoss().to(device)
viz = Visdom()
viz.line([0.], [0.], win='train_loss', opts=dict(title='train loss'))
viz.line([[0.0, 0.0]], [0.], win='test', opts=dict(title='test loss&acc.',
legend=['loss', 'acc.']))
global_step = 0
for epoch in range(epochs):
for batch_idx, (data, target) in enumerate(train_loader):
data = data.view(-1, 28*28)
data, target = data.to(device), target.cuda()
logits = net(data)
loss = criteon(logits, target)
optimizer.zero_grad()
loss.backward()
# print(w1.grad.norm(), w2.grad.norm())
optimizer.step()
global_step += 1
viz.line([loss.item()], [global_step], win='train_loss', update='append')
if batch_idx % 100 == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
test_loss = 0
correct = 0
for data, target in test_loader:
data = data.view(-1, 28 * 28)
data, target = data.to(device), target.cuda()
logits = net(data)
test_loss += criteon(logits, target).item()
pred = logits.argmax(dim=1)
correct += pred.eq(target).float().sum().item()
viz.line([[test_loss, correct / len(test_loader.dataset)]],
[global_step], win='test', update='append')
viz.images(data.view(-1, 1, 28, 28), win='x')
viz.text(str(pred.detach().cpu().numpy()), win='pred',
opts=dict(title='pred'))
test_loss /= len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
以上就是关于pytorch visdom安装及使用的介绍啦,感兴趣的朋友可以了解看看,希望能对大家有帮助,想要了解更多大家可以关注其它的相关文章。
文本转载自脚本之家。
文本转载自脚本之家
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
内容介绍前言一、Xpath简介二、Xpath语法规则语法规则标签定位属性定位索引定位取文本内容三、语法规则练习总结前言网上已经有很多大佬发过Xpath,而且讲的都很好,我是因为刚开始学习网络爬虫,对这
这篇文章主要介绍了python xlwt模块的使用解析,帮助大家更好的理解和学习使用python,感兴趣的朋友可以了解下
这篇文章主要介绍了python实现三次密码验证的示例,帮助大家更好的理解和学习使用python,感兴趣的朋友可以了解下
这篇文章主要介绍了Pytorch用Tensorboard来观察数据,上一篇文章我们讲解了关于Pytorch Dataset的数据处理,这篇我们就来讲解观察数据,下面具体相关资料,需要的朋友可以参考一下,希望对你有所帮助
这篇文章主要介绍了Keras 多次加载model出错的解决方案,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
成为群英会员,开启智能安全云计算之旅
立即注册Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008