如何理解python类的参数定义和数据扩展
Admin 2022-09-07 群英技术资讯 495 次浏览
本篇文章给大家带来了关于Python的相关知识,其中主要介绍了python类参数定义及数据扩展方式unsqueeze/expand,文章通过围绕主题展开详细的内容介绍,下面一起来看一下,希望对大家有帮助。
将conda环境设置为ai,conda activate ai
这个文件的由来:
由于在yolov1的pytorch实现的损失函数中,看到继承了nn.Module,并且其中两个参数不像c++那里指定类型,那么他们的类型是哪里来的
这里就是在探索这样一件事
操作逻辑:
N = box1.size(0) M = box2.size(0)
说明了它是类似一个矩阵的东西,对应的box1的定义就是`torch.rand(10,4)import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable #探究属性S,B是如何产生的,以及box1、box2是如何产生的、如何调用 class yoloLoss(nn.Module): def __init__(self,S,B): self.S=S self.B=B def compute_iot(self,box1,box2): N = box1.size(0) #调用方式就表示了变量是什么类型,这里是一个张量,其中每个元素是一个tensor,所以是N*4的张量 M = box2.size(0) print(M,N) yoloLoss1 =yoloLoss(10, 11) yoloLoss1.compute_iot(torch.rand(10,4),torch.rand(11,4))
探究unsqueeze以及expand的使用方法,unsqueeze可以增加一个纬度,但是维度的siz只是1而已,而expand就可以将数据进行复制,将数据变为n
# 获得一开始的初始化数值:tensor([[a1,a2,a3]]) nn1=torch.rand(1,3) print(nn1) # unsqueeze是解压的意思,在第i个维度上进行扩展,将其扩展为tensor([[[a1,a2,a3]]]) nn1=nn1.unsqueeze(0) print("*"*100) print(nn1) #利用expand对数据进行扩展 nn1=nn1.expand(1,3,3) print("*"*100) print(nn1)
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
DQN算法是DeepMind团队提出的一种深度强化学习算法,在许多电动游戏中达到人类玩家甚至超越人类玩家的水准,本文就带领大家了解一下这个算法,快来跟随小编学习一下
本文主要介绍了Playwright中如何保持登录状态,文中通过示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
一、概述random模块用于生成伪随机数之所以称之为伪随机数,是因为真正意义上的随机数(或者随机事件)在某次产生过程中是按照实验过程中表
文本给大家分享的关于python实现反转字符串的技巧,这次我们要实现的效果是,将给定的一个字符串中的每个单词,做逐个翻转。那么具体怎么实现呢?下面我们一起来看看。
这篇文章主要介绍了python中jieba模块的深入了解,jieba模块是一个python第三方中文分词模块,可以用于将语句中的中文词语分离出来
成为群英会员,开启智能安全云计算之旅
立即注册Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008