Python中用pyecharts怎样快速的画矩形树图
Admin 2022-09-06 群英技术资讯 1031 次浏览
今天这篇给大家分享的知识是“Python中用pyecharts怎样快速的画矩形树图”,小编觉得挺不错的,对大家学习或是工作可能会有所帮助,对此分享发大家做个参考,希望这篇“Python中用pyecharts怎样快速的画矩形树图”文章能帮助大家解决问题。矩形树图(Treemap),即矩形式树状结构图,利用矩形的面积表示数值的大小,颜色用于类别区分,常用于呈现多类别的一维数值比较,易读性强;基于树状的功能,在结构图中可以同时呈现数据层次的信息。
示例如下:

· 对比常见的柱状图和条形图,矩形树图弥补了以下三个缺点:
1、当我们的数据是多类别且每个类别只有一个数值时,我们用柱状图会浪费很多的空间,而且显得单调。
2、当数据间差异较大(235 vs 18),会是对我们柱状图的纵坐标设定带来困扰,忽略极差会稀释我们小值类的差异。(当然 ,如果我们的大值只有那么一两个,可以单拎出来处理)
3、柱状图无法呈现数据间的层级结构
我们的目的是为了呈现类间数值大小差异,如果有第二层,也顺便比较第二层的占比情况。
为了展示多各类别,我们利用的是省份的数据,excel表格中呈现如下:

第二层、第三层为了树状的呈现而随机生成,也是为了说明,树层结构并不要求每个节点都有枝叶。
我们先绘制只有一维的,只需要输入【省份】【关注类】两个列,这个其实更常用一点(我的角度)
province_type1 = pd.DataFrame(pd.read_excel('./各省市上市公司个数/矩形树图示例.xlsx'))
tree = []
name = [province_type1['省份'][i]+'\n'+str(province_type1['关注类A'][i]) for i in range(len(province_type1))]
for i in range(len(province_type1)):
dic = {}
dic["value"],dic["name"] = int(province_type1['关注类A'][i]),name[i]
tree.append(dic)
①name--列表型数据结构,用于存放每个数据的label,这里我为了同时呈现数据对应的省份和大小,中间用了换行符(不用的话,在我们的树图上是一行,不好看)
②绘制矩形树图需要的是list,list里面是字典,key名指定为"name","value"。
③一定要注意的是,如果你画出来的图没有数据或者没有显示,检查是不是读excel数据中出现了问题,即上述代码中int的位置。
用于绘制treemap的数据结构如下所示:

tm = (
TreeMap()
.add("关注类A",tree)
.set_series_opts(label_opts=opts.LabelOpts(position='inside'))
.set_global_opts(title_opts=opts.TitleOpts(title = '',subtitle = '2022/1/18-林老头ss'))
)
tm.render('./绘图结果/矩形树图-例一.html')
position---指定label,即我们的name的位置,inside会居中显示。如果不加,默认top,在每个矩形上方显示。
结果如下所示:

由上图可知,广东省、浙江省和江苏省在随机数据中排名前三。受显示区域的限制,数据较小或名字过长的矩形往往不能显示完全,需要交互式放大其数值。
在加入树形结构后,我们需要在代码中相应增加key为“children"的数据
from pyecharts.charts import Page,TreeMap
from pyecharts import options as opts
import pandas as pd
import math
province_type1 = pd.DataFrame(pd.read_excel('./矩形树图示例.xlsx'))
tree = []
name = [province_type1['省份'][i]+'\n'+str(province_type1['关注类A'][i]) for i in range(len(province_type1))]
for i in range(len(province_type1)):
dic = {}
dic["value"],dic["name"] = int(province_type1['关注类A'][i]),name[i]
if math.isnan(province_type1['关注类A-1'][i]) ==0:
dic["children"] = [
{"name":province_type1['省份'][i]+"A-1:"+str(province_type1['关注类A-1'][i]),"value":int(province_type1['关注类A-1'][i])},
{"name":province_type1['省份'][i]+"A-2:"+str(province_type1['关注类A-1'][i]),"value":int(province_type1['关注类A-2'][i])}
]
if math.isnan(province_type1['关注类A1-1'][i]) ==0:
dic["children"][0]["children"] = [
{"name":"A1-1:"+str(province_type1['关注类A1-1'][i]),"value":int(province_type1['关注类A1-1'][i])},
{"name":"A1-2:"+str(province_type1['关注类A1-1'][i]),"value":int(province_type1['关注类A1-2'][i])}
]
tree.append(dic)
tm = (
TreeMap()
.add("关注类A的树",tree)
.set_series_opts(label_opts=opts.LabelOpts(position='inside'))
.set_global_opts(title_opts=opts.TitleOpts(title = '加油呀朋友们~',subtitle = '2022/1/18-林老头ss'))
)
tm.render('./绘图结果/矩形树图-例二.html')
如果没有枝叶的类,则不需要在"name""value"平级上加"children",如果枝叶中有两个以上类别,相当于是一个新的树,需要增加“children”,结构和树形一致,如下所示:
【“name”:“父节点”,
"value": number,
"children":【{“name”:“子节点一”,“value”:number},
{“name”:“子节点二”,“value”:number},
{“name”:“子节点三”,“value”:number}
】
】
子序列在显示区域允许的情况下,可以继续按上述结构增加。
绘制结果如下所示:

从上图我们可以看到,尽管我们为父类命名,但显示的结果只有最小类的名称和数值。
pyecharts图像交互性较强,可以通过点击不断聚焦类,放大图像,但由于不知道怎么呈现给大家,还是鼓励大家自己动手操作去探索叭~
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
Python内置函数-list()函数。list() 方法用于将元组或字符串转换为列表。
本文主要介绍了Python为什么要保留显式的self,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧<BR>
这篇文章主要介绍了Python写一个简单上课点名系统,文章围绕Python得性概念资料写一个简的得上课点名系统,并附上详细的代码即过程总结,需要的朋友可以参考一下,希望对你有所帮助
pytorch怎么样实现多个Dataloader训练?很多新手对于Dataloader训练可能不是很了解,其实想要实现实现多个Dataloader同时训练并不是很困难,下面有实现代码,感兴趣的朋友就继续看吧。
想起小学的时候老师想点名找小伙伴回答问题的时候,老师竟斥巨资买了个点名器。今日无聊便敲了敲小时候老师斥巨资买的点名器,希望对大家有帮助
成为群英会员,开启智能安全云计算之旅
立即注册关注或联系群英网络
7x24小时售前:400-678-4567
7x24小时售后:0668-2555666
24小时QQ客服
群英微信公众号
CNNIC域名投诉举报处理平台
服务电话:010-58813000
服务邮箱:service@cnnic.cn
投诉与建议:0668-2555555
Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008