Python Tensorboard函数的用法是什么
Admin 2022-09-03 群英技术资讯 856 次浏览
这篇文章主要讲解了“Python Tensorboard函数的用法是什么”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“Python Tensorboard函数的用法是什么”吧!很多人问Pytorch要怎么可视化,于是决定搞一篇。
tensorboardX==2.0 tensorflow==1.13.2
由于tensorboard原本是在tensorflow里面用的,所以需要装一个tensorflow。会自带一个tensorboard。
也可以不装tensorboardX,直接使用pytorch当中的自带的Tensorboard。导入方式如下:
from torch.utils.tensorboard import SummaryWriter
不过由于我使用pytorch当中的自带的Tensorboard的时候有一些bug。所以还是使用tensorboardX来写这篇博客。
这个函数用于创建一个tensorboard文件,其中常用参数有:
log_dir:tensorboard文件的存放路径flush_secs:表示写入tensorboard文件的时间间隔
调用方式如下:
writer = SummaryWriter(log_dir='logs',flush_secs=60)
这个函数用于在tensorboard中创建Graphs,Graphs中存放了网络结构,其中常用参数有:
model:pytorch模型
input_to_model:pytorch模型的输入
如下所示为graphs:

调用方式如下:
if Cuda:
graph_inputs = torch.from_numpy(np.random.rand(1,3,input_shape[0],input_shape[1])).type(torch.FloatTensor).cuda()
else:
graph_inputs = torch.from_numpy(np.random.rand(1,3,input_shape[0],input_shape[1])).type(torch.FloatTensor)
writer.add_graph(model, (graph_inputs,))
这个函数用于在tensorboard中加入loss,其中常用参数有:

调用方式如下:
writer.add_scalar('Train_loss', loss, (epoch*epoch_size + iteration))
在完成tensorboard文件的生成后,可在命令行调用该文件,tensorboard网址。具体代码如下:
tensorboard --logdir=D:\Study\Collection\Tensorboard-pytorch\logs

import torch
from torch.autograd import Variable
import torch.nn.functional as functional
from tensorboardX import SummaryWriter
import matplotlib.pyplot as plt
import numpy as np
# x的shape为(100,1)
x = torch.from_numpy(np.linspace(-1,1,100).reshape([100,1])).type(torch.FloatTensor)
# y的shape为(100,1)
y = torch.sin(x) + 0.2*torch.rand(x.size())
class Net(torch.nn.Module):
def __init__(self, n_feature, n_hidden, n_output):
super(Net, self).__init__()
# Applies a linear transformation to the incoming data: :math:y = xA^T + b
# 全连接层,公式为y = xA^T + b
self.hidden = torch.nn.Linear(n_feature, n_hidden)
self.predict = torch.nn.Linear(n_hidden, n_output)
def forward(self, x):
# 隐含层的输出
hidden_layer = functional.relu(self.hidden(x))
output_layer = self.predict(hidden_layer)
return output_layer
# 类的建立
net = Net(n_feature=1, n_hidden=10, n_output=1)
writer = SummaryWriter('logs')
graph_inputs = torch.from_numpy(np.random.rand(2,1)).type(torch.FloatTensor)
writer.add_graph(net, (graph_inputs,))
# torch.optim是优化器模块
optimizer = torch.optim.Adam(net.parameters(), lr=1e-3)
# 均方差loss
loss_func = torch.nn.MSELoss()
for t in range(1000):
prediction = net(x)
loss = loss_func(prediction, y)
# 反向传递步骤
# 1、初始化梯度
optimizer.zero_grad()
# 2、计算梯度
loss.backward()
# 3、进行optimizer优化
optimizer.step()
writer.add_scalar('loss',loss, t)
writer.close()
效果如下:

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
Python内置函数-frozenset() 函数。frozenset() 返回一个冻结的集合,冻结后集合不能再添加或删除任何元素。
继承的概念,在程序中,继承描述的是多个类之间的所属关系。如果一个类A里面的属性和方法可以复用,则可以通过继承的方式,传递到类B里。那么类A就是基类,也叫做父类;类B就是派生类,也叫做子类。
经过时间和内存消耗跟踪测试,发现是keras.backend.get_value() 函数导致的程序越来越慢,而且严重的造成内存泄露;查看该函数内部实现,发现一个主要核心是x.eval(session=get_session()),该语句可能是导致内存泄露和运行慢的核心语句; 根据查看一些博文得到了运行得越来越慢的
matplotlib内置了众多预定义的颜色映射表,使用这些颜色映射表可以为用户提供更多的颜色建议,为用户节省大量的开发时间。pyplot模块中提供了colormaps()函数用于查看所有可用的颜色映射表,示例代码及运行结果如下。
这篇文章主要介绍了Python 入门学习之函数式编程, Python 中的函数式编程技术进行了简单的入门介绍,下文详细内容需要的小伙伴可以参考一下
成为群英会员,开启智能安全云计算之旅
立即注册关注或联系群英网络
7x24小时售前:400-678-4567
7x24小时售后:0668-2555666
24小时QQ客服
群英微信公众号
CNNIC域名投诉举报处理平台
服务电话:010-58813000
服务邮箱:service@cnnic.cn
投诉与建议:0668-2555555
Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008