RealBasicVSR超分模型的安装和使用是怎样的呢?
Admin 2022-09-03 群英技术资讯 938 次浏览
这篇文章主要介绍了RealBasicVSR超分模型的安装和使用是怎样的呢?相关知识,内容详细易懂,操作简单快捷,具有一定借鉴价值,相信大家阅读完这篇RealBasicVSR超分模型的安装和使用是怎样的呢?文章都会有所收获,下面我们一起来看看吧。很久没更新这个专栏了,最近比较忙。前段时间看到了这个模型觉着很有意思,弄下来自己玩了玩,但是没时间写文章,一直搁置到现在。
废话不多说,先上Github地址: RealBasicVSR地址

从给出的效果来看,还是很不错的,左侧是超分后的画面,右边是原画质,得到明显提升。下面我说一下我的安装过程,还有一些使用中的踩坑,让大家去测试项目的时候可以提前规避。
项目拉下来之后,我们先打开README,看看说明。

安装的步骤不多,但是还是有一些坑的,下面是我的安装步骤,如果你们自己安装的有问题的话,可以参考一下我的步骤。
作者没有给出需要的python版本,这里我用的python3.8
conda create -n real python=3.8 conda activate real
这里本来我以为我现在的最新版本可以跑的,后面发现不行,所以老老实实的按照作者的版本安装。
conda install pytorch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 cudatoolkit=10.1 -c pytorch
这里没什么好说的,装就完了。
pip install openmim -i https://pypi.douban.com/simple
同上
mim install mmcv-full
同上
pip install mmedit -i https://pypi.douban.com/simple
这个作者没写,但是要装。
pip install scipy -i https://pypi.douban.com/simple

嗯,在外网比较难下,我下好了,放到我的百度云盘。
链接 提取码:1234
在项目中创建文件夹checkpoints,把下载的文件放进去。如下图

ok,环境装好了,我们看看怎么使用。

作者提供了图片文件夹处理方式和视频处理方式,我们挨个测一下。
我就不准备用作者提供的demo图了,我自己找了一张,如下图。

图片尺寸

放置目录如下

执行命令如下
python inference_realbasicvsr.py configs/realbasicvsr_x4.py checkpoints/RealBasicVSR_x4.pth data/demo_001 results/demo_001
执行结果
2022-05-08 10:57:06,303 - mmedit - INFO - load checkpoint from torchvision path: torchvision://vgg19
load checkpoint from local path: checkpoints/RealBasicVSR_x4.pth
/home/zhangmaolin/.local/lib/python3.7/site-packages/torch/functional.py:445: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at ../aten/src/ATen/native/TensorShape.cpp:2157.)
return _VF.meshgrid(tensors, **kwargs) # type: ignore[attr-defined]
结果图如下

可以看出明显的清楚了很多。
结果图尺寸

然后我们看看视频超分的情况,这部分是有一些坑的,后面会说到。
首先我准备了一个视频,视频分别率如下。

可以看到视频分辨率540p。
执行命令如下,里面有作者给出样例没有的参数,我后面注意里面会解释。
python inference_realbasicvsr.py configs/realbasicvsr_x4.py checkpoints/RealBasicVSR_x4.pth data/12345.mp4 results/demo_123.mp4 --fps=25 --max_seq_len=2
执行结果
2022-05-08 11:02:01,023 - mmedit - INFO - load checkpoint from torchvision path: torchvision://vgg19
load checkpoint from local path: checkpoints/RealBasicVSR_x4.pth
/home/zhangmaolin/.local/lib/python3.7/site-packages/torch/functional.py:445: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at ../aten/src/ATen/native/TensorShape.cpp:2157.)
return _VF.meshgrid(tensors, **kwargs) # type: ignore[attr-defined]
最终视频分辨率情况

注意
1、首先,视频原长度是2分钟的,我截取到5s的视频进行超分处理的。不然会显存溢出。
2、--max_seq_len=2参数也是为了避免显存溢出,总的来看,这个模型不太适合直接跑视频,最好的方式还是跑图片序列,然后最后压缩图片为视频比较好。
作者给了一个demo程序可以将输出的图片压缩为前后对比视频,如下图说明。

我测试了一下,代码这里需要改动一下,代码框出的部分需要把注释取消。

对比视频如下图,左边为超分后效果,右边为原图效果。

总的来说,该模型处理图片还是效果很好的,可以稍微改造一下
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
这篇文章主要介绍了Python3 中return和yield的区别,return和yield都用来返回值;在一次性地返回所有值场景中return和yield的作用是一样的,但是具体有什么区别呢,带着疑问一起进入下面文章学习详细内容吧
在机器视觉中,对于图像的处理有时候因为放置的原因导致ROI区域倾斜,这个时候我们会想办法把它纠正为正确的角度视角来,方便下一步的布局分析与文字识别,这个时候通过透视变换就可以取得比较好的裁剪效果。
这篇文章主要为大家介绍了Python 字典和字符串,具有一定的参考价值,感兴趣的小伙伴们可以参考一下,希望能够给你带来帮助
python中的append()函数是在列表末尾添加新的对象,且将添加的对象最为一个整体,下面这篇文章主要给大家介绍了关于Python列表append()函数使用方法的相关资料,文中通过实例代码介绍的非常详细,需要的朋友可以参考下
这篇文章主要介绍了pytorch教程中网络的构建流程,文中附含了详细的示例代码流程,有需要的朋友可以借鉴参考下,希望可以有所帮助
成为群英会员,开启智能安全云计算之旅
立即注册关注或联系群英网络
7x24小时售前:400-678-4567
7x24小时售后:0668-2555666
24小时QQ客服
群英微信公众号
CNNIC域名投诉举报处理平台
服务电话:010-58813000
服务邮箱:service@cnnic.cn
投诉与建议:0668-2555555
Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008