用Python怎样绘制风玫瑰图,代码是什么
Admin 2022-09-03 群英技术资讯 1481 次浏览
很多朋友都对“用Python怎样绘制风玫瑰图,代码是什么”的内容比较感兴趣,对此小编整理了相关的知识分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获,那么感兴趣的朋友就继续往下看吧!Matplotlib作为后端。安装方式直接使用:
pip install windrose
import pandas as pd import numpy as np from matplotlib import pyplot as plt import matplotlib.cm as cm from math import pi import windrose from windrose import WindroseAxes, WindAxes, plot_windrose from mpl_toolkits.axes_grid1.inset_locator import inset_axes import cartopy.crs as ccrs import cartopy.io.img_tiles as cimgt
df = pd.read_csv("./sample_wind_poitiers.csv", parse_dates=['Timestamp'])
df = df.set_index('Timestamp')
df['speed_x'] = df['speed'] * np.sin(df['direction'] * pi / 180.0) df['speed_y'] = df['speed'] * np.cos(df['direction'] * pi / 180.0)
fig, ax = plt.subplots(figsize=(8, 8), dpi=80)
x0, x1 = ax.get_xlim()
y0, y1 = ax.get_ylim()
ax.set_aspect(abs(x1-x0)/abs(y1-y0))
ax.set_aspect('equal')
ax.scatter(df['speed_x'], df['speed_y'], alpha=0.25)
df.plot(kind='scatter', x='speed_x', y='speed_y', alpha=0.05, ax=ax)
Vw = 80
ax.set_xlim([-Vw, Vw])
ax.set_ylim([-Vw, Vw])

ax = WindroseAxes.from_ax() ax.bar(df.direction.values, df.speed.values, bins=np.arange(0.01,10,1), cmap=cm.hot, lw=3) ax.set_legend()

ax = WindroseAxes.from_ax() ax.box(df.direction.values, df.speed.values, bins=np.arange(0.01,10,1), cmap=cm.hot, lw=3) ax.set_legend()

plot_windrose(df, kind='contour', bins=np.arange(0.01,8,1), cmap=cm.hot, lw=3)

def plot_month(df, t_year_month, *args, **kwargs):
by = 'year_month'
df[by] = df.index.map(lambda dt: (dt.year, dt.month))
df_month = df[df[by] == t_year_month]
ax = plot_windrose(df_month, *args, **kwargs)
return ax
plot_month(df, (2014, 7), kind='contour', bins=np.arange(0, 10, 1), cmap=cm.hot)

plot_month(df, (2014, 8), kind='contour', bins=np.arange(0, 10, 1), cmap=cm.hot)

plot_month(df, (2014, 9), kind='contour', bins=np.arange(0, 10, 1), cmap=cm.hot)

bins = np.arange(0,30+1,1) bins = bins[1:] plot_windrose(df, kind='pdf', bins=np.arange(0.01,30,1),normed=True)
proj = ccrs.PlateCarree()
fig = plt.figure(figsize=(12, 6))
minlon, maxlon, minlat, maxlat = (6.5, 7.0, 45.85, 46.05)
main_ax = fig.add_subplot(1, 1, 1, projection=proj)
main_ax.set_extent([minlon, maxlon, minlat, maxlat], crs=proj)
main_ax.gridlines(draw_labels=True)
main_ax.add_wms(wms='http://vmap0.tiles.osgeo.org/wms/vmap0',layers=['basic'])
cham_lon, cham_lat = (6.8599, 45.9259)
passy_lon, passy_lat = (6.7, 45.9159)
wrax_cham = inset_axes(main_ax,
width=1,
height=1,
loc='center',
bbox_to_anchor=(cham_lon, cham_lat),
bbox_transform=main_ax.transData,
axes_class=windrose.WindroseAxes,
height_deg = 0.1
wrax_passy = inset_axes(main_ax,
width="100%",
height="100%",
bbox_to_anchor=(passy_lon-height_deg/2, passy_lat-height_deg/2, height_deg, height_deg),
bbox_transform=main_ax.transData,
axes_class=windrose.WindroseAxes,
)
wrax_cham.bar(df.direction.values, df.speed.values,bins=np.arange(0.01,10,1), lw=3)
wrax_passy.bar(df.direction.values, df.speed.values,bins=np.arange(0.01,10,1), lw=3)
for ax in [wrax_cham, wrax_passy]:
ax.tick_params(labelleft=False, labelbottom=False)

最后:
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
我们知道视图是 MTV 设计模式中的 V 层,它是实现业务逻辑的关键层,因此视图是需要掌握的。为了让大家更了解视图,这篇文章就给大家分享Django视图函数的使用,感兴趣的朋友就继续往下看吧。
本文主要介绍了python读取matlab数据,文中通过示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
jieba库是一款优秀的Python第三方中文分词库,jieba支持三种分词模式:精确模式、全模式和搜索引擎模式,下面这篇文章主要给大家介绍了关于Python第三方库jieba库与中文分词的相关资料,需要的朋友可以参考下
这篇文章主要介绍了Django利用Cookie实现反爬虫,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
这篇文章主要介绍了python中对%、~含义的解释,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
成为群英会员,开启智能安全云计算之旅
立即注册Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008