Tensorflow中cpu和gpu的用法有哪些不同呢?
Admin 2022-09-02 群英技术资讯 563 次浏览
在Tensorflow中使用gpu和cpu是有很大的差别的。在小数据集的情况下,cpu和gpu的性能差别不大。
不过在大数据集的情况下,cpu的时间显著增加,而gpu变化并不明显。
不过,我的笔记本电脑的风扇终于全功率运行了。
import tensorflow as tf import timeit import numpy as np import matplotlib.pyplot as plt def cpu_run(num): with tf.device('/cpu:0'): cpu_a=tf.random.normal([1,num]) cpu_b=tf.random.normal([num,1]) c=tf.matmul(cpu_a,cpu_b) return c def gpu_run(num): with tf.device('/gpu:0'): gpu_a=tf.random.normal([1,num]) gpu_b=tf.random.normal([num,1]) c=tf.matmul(gpu_a,gpu_b) return c k=10 m=7 cpu_result=np.arange(m,dtype=np.float32) gpu_result=np.arange(m,dtype=np.float32) x_time=np.arange(m) for i in range(m): k=k*10 x_time[i]=k cpu_str='cpu_run('+str(k)+')' gpu_str='gpu_run('+str(k)+')' #print(cpu_str) cpu_time=timeit.timeit(cpu_str,'from __main__ import cpu_run',number=10) gpu_time=timeit.timeit(gpu_str,'from __main__ import gpu_run',number=10) # 正式计算10次,取平均时间 cpu_time=timeit.timeit(cpu_str,'from __main__ import cpu_run',number=10) gpu_time=timeit.timeit(gpu_str,'from __main__ import gpu_run',number=10) cpu_result[i]=cpu_time gpu_result[i]=gpu_time print(cpu_result) print(gpu_result) fig, ax = plt.subplots() ax.set_xscale("log") ax.set_adjustable("datalim") ax.plot(x_time,cpu_result) ax.plot(x_time,gpu_result) ax.grid() plt.draw() plt.show()
蓝线是cpu的耗时,而红线是gpu的耗时。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
Python随机生成验证码的方法有很多,今天给大家列举两种,大家也可以在这个基础上进行改造,设计出适合自己的验证码方法方法一:利用range
这篇文章主要为大家介绍了Python利用networkx画图处理绘制Les Misérables悲惨世界里的人物关系图,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
本文实例为大家分享了Python实现渐变色水平堆叠图的具体代码,供大家参考,
这篇文章主要给大家分享Python类的内容,介绍了类的定义和使用、类的方法、类的属性和类中常用特殊方法,对大家学习Python类有一定的帮助,需要的朋友可以了解看看。
dir() 函数不带参数时,返回当前范围内的变量、方法和定义的类型列表;带参数时,返回参数的属性、方法列表。如果参数包含方法__dir__(),该方法将被调用。如果参数不包含__dir__(),该方法将最大限度地收集参数信息。
成为群英会员,开启智能安全云计算之旅
立即注册Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008