Python并行加速怎样实现,方法是什么
Admin 2022-08-23 群英技术资讯 482 次浏览
而对于我们这些从事数据分析工作的人员而言,以最简单的方式实现等价的加速运算的效果尤为重要,从而避免将时间过多花费在编写程序上。
而今天我就来带大家学习如何利用joblib这个非常简单易用的库中的相关功能,来快速实现并行计算加速效果。
作为一个被广泛使用的第三方Python库(譬如scikit-learn项框架中就大量使用joblib进行众多机器学习算法的并行加速),我们可以使用pip install joblib对其进行安装,安装完成后,下面我们来学习一下joblib中有关并行运算的常用方法:
joblib中实现并行计算只需要使用到其Parallel和delayed方法即可,使用起来非常简单方便
下面我们直接以一个小例子来演示:
joblib实现并行运算的思想是将一组通过循环产生的串行计算子任务,以多进程或多线程的方式进行调度,而我们针对自定义的运算任务需要做的仅仅是将它们封装为函数的形式即可,譬如:
import time def task_demo1(): time.sleep(1) return time.time()
接着只需要像下面的形式一样,为Parallel()设置相关参数后,衔接循环创建子任务的列表推导过程,其中利用delayed()包裹自定义任务函数,再衔接()传递任务函数所需的参数即可,其中n_jobs参数用于设置并行任务同时执行的worker数量,因此在这个例子中可以看到进度条是按照4个一组递增的,
可以看到最终时间开销也达到了并行加速效果:
其中可以根据计算任务以及机器CPU核心数具体情况为Parallel()调节参数,核心参数有:
譬如下面的例子,在我这台逻辑核心数为8的机器上,保留两个核心进行并行计算:
关于并行方式的选择上,由于Python中多线程时全局解释器锁的限制,如果你的任务是计算密集型,则推荐使用默认的多进程方式加速,如果你的任务是IO密集型譬如文件读写、网络请求等,则多线程是更好的方式且可以将n_jobs设置的很大,举个简单的例子,可以看到,通过多线程并行,我们在5秒的时间里完成了1000次请求,远快于单线程17秒请求100次的成绩
我们可以根据自己实际任务的不同,好好利用joblib来加速你的日常工作。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
这篇文章主要为大家介绍在通过Python绘制图画时如何调用本地的字体,从而解决中文乱码的问题。感兴趣的小伙伴快来跟随小编学习学习吧
这篇文章主要介绍了Python批量裁剪图片的程序代码,是批量裁剪某一文件夹下的所有图片,并指定裁剪宽高,本文给大家分享实现思路,需要的朋友可以参考下
不少朋友应该都有玩过井字棋游戏,那么我们学习了python,能否用python写一个井字棋小游戏呢?其实,python实现简单的井字棋小游戏并不困难,接下来就给大家分享使用Python实现井字棋小游戏的代码,感兴趣的朋友可以参考。
IndentationError:unexpectedindent Python中强制缩进,,IndentationError:unexpectedindent缩进错误这类错误非常常见,一般都是由于tab在不同的平台上占用长度不同导致,有些事程序员自己直接使用空格或其他来顶替tab。解决办法非常简单,在所在平台上使用标准的tab进行缩进,就OK了。Unicode
今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”意思是,有若干只鸡和兔子关在同一个笼子里,从上面数有35个头,从下面数有94只脚,问:笼子中有多少只鸡?多少只兔子?
成为群英会员,开启智能安全云计算之旅
立即注册Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008