Numpy深拷贝的概念和原理如何理解
Admin 2022-08-19 群英技术资讯 899 次浏览
这篇文章主要介绍“Numpy深拷贝的概念和原理如何理解”的相关知识,下面会通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“Numpy深拷贝的概念和原理如何理解”文章能帮助大家解决问题。深拷贝和浅拷贝是Python中重要的概念,本文重点介绍在NumPy中深拷贝和浅拷贝相关操作的定义和背后的原理。
闲话少说,我们直接开始吧!
我们来举个栗子,如下所示我们有两个数组a和b,样例代码如下:
import numpy as np
a = np.array([1, 2, 3])
b = a
print('a =', a)
print('b =', b)
输出如下:
a = [1 2 3]
b = [1 2 3]
此时如果我们对数组a做如下改变,代码如下:
import numpy as np
a = np.array([1, 2, 3])
b = a
a [0] = 42
print('a =', a)
print('b =', b)
那么我们的问题为: 此时b的值应该为多少?
运行上述代码后,我们得到输出如下:
a = [42 2 3]
b = [42 2 3]
也许有人会觉得输出应该为??a=[42 2 3]?? 和 ??b=[1 2 3]?? ,但是运行上述代码后我们发现??a??和??b??的值均发生了相应的改变。这主要是由于在??Numpy??中对变量的赋值操作,实际上发生的为浅拷贝。
换句话说,此时两个变量指向同一块内存地址,如下所示:

所以,此时如果我们修改数组??original_array??中的某个元素,`copy_array
??由于和??original_array`公用同一块内存,所以其中的元素也会发生相应的变化。
如果我们想要对??Numpy??数组执行深拷贝,此时我们可以使用函数??copy()??。
相关的样例代码如下:
import numpy as np
a = np.array([1, 2, 3])
b = a.copy()
print('a =', a)
print('b =', b)
输出如下:
a = [1 2 3]
b = [1 2 3]
此时,如果我们改变数组??a??中的元素,代码如下:
import numpy as np
a = np.array([1, 2, 3])
b = a.copy()
a [0] = 42
print('a =', a)
print('b =', b)
此时的代码输出如下:
a = [42 2 3]
b = [1 2 3]
观察上述输出,我们可以清楚地看到数组??a??发生了改变而数组??b??没有发生变化,这是由于我们使用了深拷贝。
此时的内存地址如下:

由于 ??original_array??和??copy_array??指向不同的内存地址空间,所以此时我们对??original_array??的改变并不会对??copy_array??带来影响。
经过上述对深拷贝和浅拷贝的举例和示例,相信大家都已有了清晰的认识,接着我们对上述知识点进行总结,归纳如下:
如果我们需要知道两个变量是否指向同一块内存地址,我们可以方便地使用??is??操作。
浅拷贝示例:
a = np.array([1, 2, 3]) b = a print(b is a)
输出如下:
True
深拷贝示例:
a = np.array([1, 2, 3]) b = a.copy() print(b is a)
输出如下:
False
尽管本文中所有的示例都使用了NumPy数组,但本文中所涉及的知识也适用于Python中的列表和字典等其他数据类型。
总之,我们需要时刻记载心中:在浅拷贝中,原始数组和新的数组共同执行同一块内存;同时在深拷贝中,新的数组是原始数据的单独的拷贝,它指向一块新的内存地址。
本文重点介绍了Python中对Numpy数组操作的浅拷贝和深拷贝的概念和背后的原理,同时给出了相应的代码示例。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
这篇文章主要为大家介绍了python数字图像处理之基本图形的绘制,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
时间处理是我们日常开发中最最常见的需求,例如:获取当前datetime、获取当天date、获取明天 前N天、获取当天开始和结束时间(00:00:00 23:
python中如何实现列表去重不打乱顺序?方法一,使用集合set去重;方法二,使用用sort()中的key字段进行设定;方法三,使用reduce()函数去重
pytho多张图片的无损拼接的实现是怎样的?下文有实例供大家参考,对大家了解操作过程或相关知识有一定的帮助,而且实用性强,希望这篇文章能帮助大家,下面我们一起来了解看看吧。
这篇文章主要介绍了Python 实现绘制子图及子图刻度的变换等问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
成为群英会员,开启智能安全云计算之旅
立即注册关注或联系群英网络
7x24小时售前:400-678-4567
7x24小时售后:0668-2555666
24小时QQ客服
群英微信公众号
CNNIC域名投诉举报处理平台
服务电话:010-58813000
服务邮箱:service@cnnic.cn
投诉与建议:0668-2555555
Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 ICP核准(ICP备案)粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008