pyecharts如何实现数据可视化,怎样画常见图表案
Admin 2022-08-05 群英技术资讯 748 次浏览
这篇文章主要介绍了pyecharts如何实现数据可视化,怎样画常见图表案相关知识,内容详细易懂,操作简单快捷,具有一定借鉴价值,相信大家阅读完这篇pyecharts如何实现数据可视化,怎样画常见图表案文章都会有所收获,下面我们一起来看看吧。# 导入模块
from pyecharts import options as opts
from pyecharts.charts import Pie
#准备数据
label=['Mac口红','Tom Ford口红','圣罗兰','纪梵希','花西子','迪奥','阿玛尼','香奈儿']
values = [300,300,300,300,44,300,300,300]
# 自定义函数
def pie_base():
c = (
Pie()
.add("",[list(z) for z in zip(label,values)])
.set_global_opts(title_opts = opts.TitleOpts(title="口红品牌分析"))
.set_series_opts(label_opts=opts.LabelOpts(formatter="{b}:{c} {d}%")) # 值得一提的是,{d}%为百分比
)
return c
# 调用自定义函数生成render.html
pie_base().render()

#导入模块
from pyecharts.globals import ThemeType
from pyecharts import options as opts
from pyecharts.charts import Bar
#准备数据
l1=['星期一','星期二','星期三','星期四','星期五','星期七','星期日']
l2=[100,200,300,400,500,400,300]
bar = (
Bar(init_opts=opts.InitOpts(theme=ThemeType.LIGHT))
.add_xaxis(l1)
.add_yaxis("柱状图标签", l2)
.set_global_opts(title_opts=opts.TitleOpts(title="柱状图-基本示例", subtitle="副标题"))
)
# 生成render.html
bar.render()

#导入模块
import pyecharts.options as opts
from pyecharts.charts import Line
#准备数据
x=['星期一','星期二','星期三','星期四','星期五','星期七','星期日']
y1=[100,200,300,400,100,400,300]
y2=[200,300,200,100,200,300,400]
line=(
Line()
.add_xaxis(xaxis_data=x)
.add_yaxis(series_name="y1线",y_axis=y1,symbol="arrow",is_symbol_show=True)
.add_yaxis(series_name="y2线",y_axis=y2)
.set_global_opts(title_opts=opts.TitleOpts(title="Line-双折线图"))
)
#生成render.html
line.render()

from pyecharts import options as opts
from pyecharts.charts import Bar, Grid, Line
#x轴的值为列表,包含每个月份
x_data = ["{}月".format(i) for i in range(1, 13)]
bar = (
Bar()
.add_xaxis(x_data)
#第一个y轴的值、标签、颜色
.add_yaxis(
"降雨量",
[2.0, 4.9, 7.0, 23.2, 25.6, 76.7, 135.6, 162.2, 68.6, 22.0, 6.6, 4.3],
yaxis_index=0,
color="#5793f3",
)
# #第二个y轴的值、标签、颜色
# .add_yaxis(
# "蒸发量",
# [2.6, 5.9, 9.0, 26.4, 28.7, 70.7, 175.6, 182.2, 48.7, 18.8, 6.0, 2.3],
# yaxis_index=1,
# color="#5793f3",
# )
#右纵坐标
.extend_axis(
yaxis=opts.AxisOpts(
name="降雨量",
type_="value",
min_=0,
max_=250,
position="right",
axisline_opts=opts.AxisLineOpts(
linestyle_opts=opts.LineStyleOpts(color="#d14a61")
),
axislabel_opts=opts.LabelOpts(formatter="{value} ml"),
)
)
#左纵坐标
.extend_axis(
yaxis=opts.AxisOpts(
type_="value",
name="温度",
min_=0,
max_=25,
position="left",
axisline_opts=opts.AxisLineOpts(
linestyle_opts=opts.LineStyleOpts(color="#d14a61")
),
axislabel_opts=opts.LabelOpts(formatter="{value} °C"),
splitline_opts=opts.SplitLineOpts(
is_show=True, linestyle_opts=opts.LineStyleOpts(opacity=1)
),
)
)
.set_global_opts(
yaxis_opts=opts.AxisOpts(
name="降雨量",
min_=0,
max_=250,
position="right",
offset=0,
axisline_opts=opts.AxisLineOpts(
linestyle_opts=opts.LineStyleOpts(color="#5793f3")
),
axislabel_opts=opts.LabelOpts(formatter="{value} ml"),
),
title_opts=opts.TitleOpts(title="Grid-多 Y 轴示例"),
tooltip_opts=opts.TooltipOpts(trigger="axis", axis_pointer_type="cross"),
)
)
line = (
Line()
.add_xaxis(x_data)
.add_yaxis(
"平均温度",
[2.0, 2.2, 3.3, 4.5, 6.3, 10.2, 20.3, 23.4, 23.0, 16.5, 12.0, 6.2],
yaxis_index=2,
color="#675bba",
label_opts=opts.LabelOpts(is_show=False),
)
)
bar.overlap(line)
grid = Grid()
grid.add(bar, opts.GridOpts(pos_left="5%", pos_right="20%"), is_control_axis_index=True)
grid.render()

# 导入模块
from pyecharts import options as opts
from pyecharts.charts import Scatter
# 设置销售数据
week = ["周一","周二","周三","周四","周五","周六","周日"]
c =Scatter() # 散点图绘制
c.add_xaxis(week)
c.add_yaxis("商家A",[80,65,46,37,57,68,90])
c.set_global_opts(title_opts=opts.TitleOpts(title="一周的销售额(万元)")) # 设置图表标题
c.render()

from pyecharts import options as opts
from pyecharts.charts import Pie
label=['Mac口红','Tom Ford口红','圣罗兰','纪梵希','花西子']
values = [100,200,250,350,400]
c = (
Pie()
.add(
"",
[list(z) for z in zip(label,values)],
radius=["30%", "75%"],
center=["50%", "50%"],
rosetype="radius",
label_opts=opts.LabelOpts(is_show=False),
)
.set_global_opts(title_opts=opts.TitleOpts(title="标题"))
.set_series_opts(label_opts=opts.LabelOpts(formatter="{b}:{c} {d}%")) # 值得一提的是,{d}%为百分比
.render("玫瑰图.html")
)

# 导入WordCloud及配置模块
from pyecharts import options as opts
from pyecharts.charts import WordCloud
from pyecharts.globals import SymbolType
# 添加词频数据
words = [
("Sam S Club", 10000),
("Macys", 6181),
("Amy Schumer", 4386),
("Jurassic World", 4055),
("Charter Communications", 2467),
("Chick Fil A", 2244),
("Planet Fitness", 1868),
("Pitch Perfect", 1484),
("Express", 1112),
("Home", 865),
("Johnny Depp", 847),
("Lena Dunham", 582),
("Lewis Hamilton", 555),
("KXAN", 550),
("Mary Ellen Mark", 462),
("Farrah Abraham", 366),
("Rita Ora", 360),
("Serena Williams", 282),
("NCAA baseball tournament", 273),
("Point Break", 265),
]
# WordCloud模块,链式调用配置,最终生成html文件
c = (
WordCloud()
.add("", words, word_size_range=[20, 100], shape=SymbolType.DIAMOND)
.set_global_opts(title_opts=opts.TitleOpts(title="词云图"))
.render("wordcloud_diamond.html")
)

from pyecharts import options as opts
from pyecharts.charts import Radar
v1 = [[8.5,50000,15000,8000,13000,5000]]
v2 = [[8.1,42000,13000,7000,15000,7000]]
def radar_base() ->Radar:
c = (
Radar()
.add_schema(
schema=[
opts.RadarIndicatorItem(name='KDA',max_=10),
opts.RadarIndicatorItem(name='输出', max_=60000),
opts.RadarIndicatorItem(name='经济', max_=20000),
opts.RadarIndicatorItem(name='生存', max_=10000),
opts.RadarIndicatorItem(name='推进', max_=20000),
opts.RadarIndicatorItem(name='刷野', max_=10000),
]
)
.add(
'射手',v1,
color='blue',
#通过颜色属性 将其填充
areastyle_opts=opts.AreaStyleOpts(
opacity=0.5,
color='blue'
),
)
.add(
'法师',v2,
color='red',
areastyle_opts=opts.AreaStyleOpts(
opacity=0.5,
color='red'
),
)
.set_series_opts(label_opts=opts.LabelOpts(is_show=False))
.set_global_opts(title_opts=opts.TitleOpts(title='英雄成长属性对比'))
)
return c
radar_base().render("雷达图.html")

from pyecharts import options as opts
from pyecharts.charts import Scatter
from pyecharts.commons.utils import JsCode
from pyecharts.faker import Faker
c = (
Scatter()
.add_xaxis(Faker.choose())
.add_yaxis(
"商家A",
[list(z) for z in zip(Faker.values(), Faker.choose())],
label_opts=opts.LabelOpts(
formatter=JsCode(
"function(params){return params.value[1] +' : '+ params.value[2];}"
)
),
)
.set_global_opts(
title_opts=opts.TitleOpts(title="Scatter散点图-多维度数据"),
tooltip_opts=opts.TooltipOpts(
formatter=JsCode(
"function (params) {return params.name + ' : ' + params.value[2];}"
)
),
visualmap_opts=opts.VisualMapOpts(
type_="color", max_=150, min_=20, dimension=1
),
)
.render("散点图.html")
)

import pyecharts.options as opts
from pyecharts.charts import Pie
from pyecharts.globals import ThemeType
list1 = [300,55,400,110]
attr1 = ["学习", "运动","休息", "娱乐"]
list2 = [40,160,45,35,80,400,35,60]
attr2 = ["阅读", "上课", "运动", "讨论", "编程", "睡觉","听音乐", "玩手机"]
inner_data_pair = [list(z) for z in zip(attr1, list1)]
outer_data_pair = [list(z) for z in zip(attr2, list2)]
(
Pie(init_opts=opts.InitOpts(theme=ThemeType.LIGHT))
.add(
series_name="时长占比",
data_pair=inner_data_pair,
radius=[0, "30%"],
label_opts=opts.LabelOpts(position="inner"),
)
.add(
series_name="时长占比",
radius=["40%", "55%"],
data_pair=outer_data_pair,
label_opts=opts.LabelOpts(
position="outside",
formatter="{a|{a}}{abg|}\n{hr|}\n {b|{b}: }{c} {per|{d}%} ",
background_color="#eee",
border_color="#aaa",
border_width=1,
border_radius=4,
rich={
"a": {"color": "#999", "lineHeight": 22, "align": "center"},
"abg": {
"backgroundColor": "#e3e3e3",
"width": "100%",
"align": "right",
"height": 22,
"borderRadius": [4, 4, 0, 0],
},
"hr": {
"borderColor": "#aaa",
"width": "100%",
"borderWidth": 0.5,
"height": 0,
},
"b": {"fontSize": 16, "lineHeight": 33},
"per": {
"color": "#eee",
"backgroundColor": "#334455",
"padding": [2, 4],
"borderRadius": 2,
},
},
),
)
.set_global_opts(legend_opts=opts.LegendOpts(pos_left="left", orient="vertical"))
.set_series_opts(
tooltip_opts=opts.TooltipOpts(
trigger="item", formatter="{a} <br/>{b}: {c} ({d}%)"
)
)
.render("嵌套饼图.html")
)

#导入模块
from pyecharts import options as opts
from pyecharts.charts import Map
import random
# 设置商家A所存在的相关省份,并设置初始数量为0
ultraman = [
['四川', 0],
['台湾', 0],
['新疆', 0],
['江西', 0],
['河南', 0],
['辽宁', 0],
['青海', 0],
['福建', 0],
['西藏', 0]
]
# 设置商家B存在的相关省份,并设置初始数量为0
monster = [
['广东', 0],
['北京', 0],
['上海', 0],
['台湾', 0],
['湖南', 0],
['浙江', 0],
['甘肃', 0],
['黑龙江', 0],
['江苏', 0]
]
def data_filling(array):
'''
作用:给数组数据填充随机数
'''
for i in array:
# 随机生成1到1000的随机数
i[1] = random.randint(1,1000)
data_filling(ultraman)
data_filling(monster)
def create_china_map():
(
Map()
.add(
series_name="商家A",
data_pair=ultraman,
maptype="china",
# 是否默认选中,默认为True
is_selected=True,
# 是否启用鼠标滚轮缩放和拖动平移,默认为True
is_roam=True,
# 是否显示图形标记,默认为True
is_map_symbol_show=False,
# 图元样式配置
itemstyle_opts={
# 常规显示
"normal": {"areaColor": "white", "borderColor": "red"},
# 强调颜色
"emphasis": {"areaColor": "pink"}
}
)
.add(
series_name="商家B",
data_pair=monster,
maptype="china",
)
# 全局配置项
.set_global_opts(
# 设置标题
title_opts=opts.TitleOpts(title="中国地图"),
# 设置标准显示
visualmap_opts=opts.VisualMapOpts(max_=1000, is_piecewise=False)
)
# 系列配置项
.set_series_opts(
# 标签名称显示,默认为True
label_opts=opts.LabelOpts(is_show=True, color="blue")
)
# 生成本地html文件
.render("中国地图.html")
)
#调用自定义函数
create_china_map()

from pyecharts import options as opts
from pyecharts.charts import Map
import random
# 设置商家A所存在的相关国家,并设置初始数量为0
ultraman = [
['Russia', 0],
['China', 0],
['United States', 0],
['Australia', 0]
]
# 设置商家B存在的相关国家,并设置初始数量为0
monster = [
['India', 0],
['Canada', 0],
['France', 0],
['Brazil', 0]
]
def data_filling(array):
for i in array:
# 随机生成1到1000的随机数
i[1] = random.randint(1,1000)
print(i)
data_filling(ultraman)
data_filling(monster)
def create_world_map():
'''
作用:生成世界地图
'''
( # 大小设置
Map()
.add(
series_name="商家A",
data_pair=ultraman,
maptype="world",
)
.add(
series_name="商家B",
data_pair=monster,
maptype="world",
)
# 全局配置项
.set_global_opts(
# 设置标题
title_opts=opts.TitleOpts(title="世界地图"),
# 设置标准显示
visualmap_opts=opts.VisualMapOpts(max_=1000, is_piecewise=False),
)
# 系列配置项
.set_series_opts(
# 标签名称显示,默认为True
label_opts=opts.LabelOpts(is_show=False, color="blue")
)
# 生成本地html文件
.render("世界地图.html")
)
create_world_map()

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
由于列表是序列的一种,列表支持我们对字符串序列进行操作。唯一的区别就是其结果往往是列表而不是符串。我们都知道列表方便我们理解操作,是我们在日常生活中解决问题的方法之一。
这篇文章主要介绍了python数据分析之员工个人信息可视化,文中有非常详细的代码示例,对正在学习python可视化的小伙伴们有很好的帮助,需要的朋友可以参考下
python中数组array和列表list的基本用法及区别解析,一些朋友可能会遇到这方面的问题,对此在下文小编向大家来讲解一下,内容详细,易于理解,希望大家阅读完这篇能有收获哦,有需要的朋友就往下看吧!
这篇文章介绍了Python中的进程操作模块(multiprocess.process),文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
Python中的元组容器序列(tuple)与列表容器序列(list)具有极大的相似之处,因此也常被称为不可变的列表。但是两者之间也有很多的差距,元组侧重于数据的展示,而列表侧重于数据的存储与操作。
成为群英会员,开启智能安全云计算之旅
立即注册Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008