pyecharts如何实现数据可视化,怎样画常见图表案
Admin 2022-08-05 群英技术资讯 683 次浏览
# 导入模块 from pyecharts import options as opts from pyecharts.charts import Pie #准备数据 label=['Mac口红','Tom Ford口红','圣罗兰','纪梵希','花西子','迪奥','阿玛尼','香奈儿'] values = [300,300,300,300,44,300,300,300] # 自定义函数 def pie_base(): c = ( Pie() .add("",[list(z) for z in zip(label,values)]) .set_global_opts(title_opts = opts.TitleOpts(title="口红品牌分析")) .set_series_opts(label_opts=opts.LabelOpts(formatter="{b}:{c} {d}%")) # 值得一提的是,{d}%为百分比 ) return c # 调用自定义函数生成render.html pie_base().render()
#导入模块 from pyecharts.globals import ThemeType from pyecharts import options as opts from pyecharts.charts import Bar #准备数据 l1=['星期一','星期二','星期三','星期四','星期五','星期七','星期日'] l2=[100,200,300,400,500,400,300] bar = ( Bar(init_opts=opts.InitOpts(theme=ThemeType.LIGHT)) .add_xaxis(l1) .add_yaxis("柱状图标签", l2) .set_global_opts(title_opts=opts.TitleOpts(title="柱状图-基本示例", subtitle="副标题")) ) # 生成render.html bar.render()
#导入模块 import pyecharts.options as opts from pyecharts.charts import Line #准备数据 x=['星期一','星期二','星期三','星期四','星期五','星期七','星期日'] y1=[100,200,300,400,100,400,300] y2=[200,300,200,100,200,300,400] line=( Line() .add_xaxis(xaxis_data=x) .add_yaxis(series_name="y1线",y_axis=y1,symbol="arrow",is_symbol_show=True) .add_yaxis(series_name="y2线",y_axis=y2) .set_global_opts(title_opts=opts.TitleOpts(title="Line-双折线图")) ) #生成render.html line.render()
from pyecharts import options as opts from pyecharts.charts import Bar, Grid, Line #x轴的值为列表,包含每个月份 x_data = ["{}月".format(i) for i in range(1, 13)] bar = ( Bar() .add_xaxis(x_data) #第一个y轴的值、标签、颜色 .add_yaxis( "降雨量", [2.0, 4.9, 7.0, 23.2, 25.6, 76.7, 135.6, 162.2, 68.6, 22.0, 6.6, 4.3], yaxis_index=0, color="#5793f3", ) # #第二个y轴的值、标签、颜色 # .add_yaxis( # "蒸发量", # [2.6, 5.9, 9.0, 26.4, 28.7, 70.7, 175.6, 182.2, 48.7, 18.8, 6.0, 2.3], # yaxis_index=1, # color="#5793f3", # ) #右纵坐标 .extend_axis( yaxis=opts.AxisOpts( name="降雨量", type_="value", min_=0, max_=250, position="right", axisline_opts=opts.AxisLineOpts( linestyle_opts=opts.LineStyleOpts(color="#d14a61") ), axislabel_opts=opts.LabelOpts(formatter="{value} ml"), ) ) #左纵坐标 .extend_axis( yaxis=opts.AxisOpts( type_="value", name="温度", min_=0, max_=25, position="left", axisline_opts=opts.AxisLineOpts( linestyle_opts=opts.LineStyleOpts(color="#d14a61") ), axislabel_opts=opts.LabelOpts(formatter="{value} °C"), splitline_opts=opts.SplitLineOpts( is_show=True, linestyle_opts=opts.LineStyleOpts(opacity=1) ), ) ) .set_global_opts( yaxis_opts=opts.AxisOpts( name="降雨量", min_=0, max_=250, position="right", offset=0, axisline_opts=opts.AxisLineOpts( linestyle_opts=opts.LineStyleOpts(color="#5793f3") ), axislabel_opts=opts.LabelOpts(formatter="{value} ml"), ), title_opts=opts.TitleOpts(title="Grid-多 Y 轴示例"), tooltip_opts=opts.TooltipOpts(trigger="axis", axis_pointer_type="cross"), ) ) line = ( Line() .add_xaxis(x_data) .add_yaxis( "平均温度", [2.0, 2.2, 3.3, 4.5, 6.3, 10.2, 20.3, 23.4, 23.0, 16.5, 12.0, 6.2], yaxis_index=2, color="#675bba", label_opts=opts.LabelOpts(is_show=False), ) ) bar.overlap(line) grid = Grid() grid.add(bar, opts.GridOpts(pos_left="5%", pos_right="20%"), is_control_axis_index=True) grid.render()
# 导入模块 from pyecharts import options as opts from pyecharts.charts import Scatter # 设置销售数据 week = ["周一","周二","周三","周四","周五","周六","周日"] c =Scatter() # 散点图绘制 c.add_xaxis(week) c.add_yaxis("商家A",[80,65,46,37,57,68,90]) c.set_global_opts(title_opts=opts.TitleOpts(title="一周的销售额(万元)")) # 设置图表标题 c.render()
from pyecharts import options as opts from pyecharts.charts import Pie label=['Mac口红','Tom Ford口红','圣罗兰','纪梵希','花西子'] values = [100,200,250,350,400] c = ( Pie() .add( "", [list(z) for z in zip(label,values)], radius=["30%", "75%"], center=["50%", "50%"], rosetype="radius", label_opts=opts.LabelOpts(is_show=False), ) .set_global_opts(title_opts=opts.TitleOpts(title="标题")) .set_series_opts(label_opts=opts.LabelOpts(formatter="{b}:{c} {d}%")) # 值得一提的是,{d}%为百分比 .render("玫瑰图.html") )
# 导入WordCloud及配置模块 from pyecharts import options as opts from pyecharts.charts import WordCloud from pyecharts.globals import SymbolType # 添加词频数据 words = [ ("Sam S Club", 10000), ("Macys", 6181), ("Amy Schumer", 4386), ("Jurassic World", 4055), ("Charter Communications", 2467), ("Chick Fil A", 2244), ("Planet Fitness", 1868), ("Pitch Perfect", 1484), ("Express", 1112), ("Home", 865), ("Johnny Depp", 847), ("Lena Dunham", 582), ("Lewis Hamilton", 555), ("KXAN", 550), ("Mary Ellen Mark", 462), ("Farrah Abraham", 366), ("Rita Ora", 360), ("Serena Williams", 282), ("NCAA baseball tournament", 273), ("Point Break", 265), ] # WordCloud模块,链式调用配置,最终生成html文件 c = ( WordCloud() .add("", words, word_size_range=[20, 100], shape=SymbolType.DIAMOND) .set_global_opts(title_opts=opts.TitleOpts(title="词云图")) .render("wordcloud_diamond.html") )
from pyecharts import options as opts from pyecharts.charts import Radar v1 = [[8.5,50000,15000,8000,13000,5000]] v2 = [[8.1,42000,13000,7000,15000,7000]] def radar_base() ->Radar: c = ( Radar() .add_schema( schema=[ opts.RadarIndicatorItem(name='KDA',max_=10), opts.RadarIndicatorItem(name='输出', max_=60000), opts.RadarIndicatorItem(name='经济', max_=20000), opts.RadarIndicatorItem(name='生存', max_=10000), opts.RadarIndicatorItem(name='推进', max_=20000), opts.RadarIndicatorItem(name='刷野', max_=10000), ] ) .add( '射手',v1, color='blue', #通过颜色属性 将其填充 areastyle_opts=opts.AreaStyleOpts( opacity=0.5, color='blue' ), ) .add( '法师',v2, color='red', areastyle_opts=opts.AreaStyleOpts( opacity=0.5, color='red' ), ) .set_series_opts(label_opts=opts.LabelOpts(is_show=False)) .set_global_opts(title_opts=opts.TitleOpts(title='英雄成长属性对比')) ) return c radar_base().render("雷达图.html")
from pyecharts import options as opts from pyecharts.charts import Scatter from pyecharts.commons.utils import JsCode from pyecharts.faker import Faker c = ( Scatter() .add_xaxis(Faker.choose()) .add_yaxis( "商家A", [list(z) for z in zip(Faker.values(), Faker.choose())], label_opts=opts.LabelOpts( formatter=JsCode( "function(params){return params.value[1] +' : '+ params.value[2];}" ) ), ) .set_global_opts( title_opts=opts.TitleOpts(title="Scatter散点图-多维度数据"), tooltip_opts=opts.TooltipOpts( formatter=JsCode( "function (params) {return params.name + ' : ' + params.value[2];}" ) ), visualmap_opts=opts.VisualMapOpts( type_="color", max_=150, min_=20, dimension=1 ), ) .render("散点图.html") )
import pyecharts.options as opts from pyecharts.charts import Pie from pyecharts.globals import ThemeType list1 = [300,55,400,110] attr1 = ["学习", "运动","休息", "娱乐"] list2 = [40,160,45,35,80,400,35,60] attr2 = ["阅读", "上课", "运动", "讨论", "编程", "睡觉","听音乐", "玩手机"] inner_data_pair = [list(z) for z in zip(attr1, list1)] outer_data_pair = [list(z) for z in zip(attr2, list2)] ( Pie(init_opts=opts.InitOpts(theme=ThemeType.LIGHT)) .add( series_name="时长占比", data_pair=inner_data_pair, radius=[0, "30%"], label_opts=opts.LabelOpts(position="inner"), ) .add( series_name="时长占比", radius=["40%", "55%"], data_pair=outer_data_pair, label_opts=opts.LabelOpts( position="outside", formatter="{a|{a}}{abg|}\n{hr|}\n {b|{b}: }{c} {per|{d}%} ", background_color="#eee", border_color="#aaa", border_width=1, border_radius=4, rich={ "a": {"color": "#999", "lineHeight": 22, "align": "center"}, "abg": { "backgroundColor": "#e3e3e3", "width": "100%", "align": "right", "height": 22, "borderRadius": [4, 4, 0, 0], }, "hr": { "borderColor": "#aaa", "width": "100%", "borderWidth": 0.5, "height": 0, }, "b": {"fontSize": 16, "lineHeight": 33}, "per": { "color": "#eee", "backgroundColor": "#334455", "padding": [2, 4], "borderRadius": 2, }, }, ), ) .set_global_opts(legend_opts=opts.LegendOpts(pos_left="left", orient="vertical")) .set_series_opts( tooltip_opts=opts.TooltipOpts( trigger="item", formatter="{a} <br/>{b}: {c} ({d}%)" ) ) .render("嵌套饼图.html") )
#导入模块 from pyecharts import options as opts from pyecharts.charts import Map import random # 设置商家A所存在的相关省份,并设置初始数量为0 ultraman = [ ['四川', 0], ['台湾', 0], ['新疆', 0], ['江西', 0], ['河南', 0], ['辽宁', 0], ['青海', 0], ['福建', 0], ['西藏', 0] ] # 设置商家B存在的相关省份,并设置初始数量为0 monster = [ ['广东', 0], ['北京', 0], ['上海', 0], ['台湾', 0], ['湖南', 0], ['浙江', 0], ['甘肃', 0], ['黑龙江', 0], ['江苏', 0] ] def data_filling(array): ''' 作用:给数组数据填充随机数 ''' for i in array: # 随机生成1到1000的随机数 i[1] = random.randint(1,1000) data_filling(ultraman) data_filling(monster) def create_china_map(): ( Map() .add( series_name="商家A", data_pair=ultraman, maptype="china", # 是否默认选中,默认为True is_selected=True, # 是否启用鼠标滚轮缩放和拖动平移,默认为True is_roam=True, # 是否显示图形标记,默认为True is_map_symbol_show=False, # 图元样式配置 itemstyle_opts={ # 常规显示 "normal": {"areaColor": "white", "borderColor": "red"}, # 强调颜色 "emphasis": {"areaColor": "pink"} } ) .add( series_name="商家B", data_pair=monster, maptype="china", ) # 全局配置项 .set_global_opts( # 设置标题 title_opts=opts.TitleOpts(title="中国地图"), # 设置标准显示 visualmap_opts=opts.VisualMapOpts(max_=1000, is_piecewise=False) ) # 系列配置项 .set_series_opts( # 标签名称显示,默认为True label_opts=opts.LabelOpts(is_show=True, color="blue") ) # 生成本地html文件 .render("中国地图.html") ) #调用自定义函数 create_china_map()
from pyecharts import options as opts from pyecharts.charts import Map import random # 设置商家A所存在的相关国家,并设置初始数量为0 ultraman = [ ['Russia', 0], ['China', 0], ['United States', 0], ['Australia', 0] ] # 设置商家B存在的相关国家,并设置初始数量为0 monster = [ ['India', 0], ['Canada', 0], ['France', 0], ['Brazil', 0] ] def data_filling(array): for i in array: # 随机生成1到1000的随机数 i[1] = random.randint(1,1000) print(i) data_filling(ultraman) data_filling(monster) def create_world_map(): ''' 作用:生成世界地图 ''' ( # 大小设置 Map() .add( series_name="商家A", data_pair=ultraman, maptype="world", ) .add( series_name="商家B", data_pair=monster, maptype="world", ) # 全局配置项 .set_global_opts( # 设置标题 title_opts=opts.TitleOpts(title="世界地图"), # 设置标准显示 visualmap_opts=opts.VisualMapOpts(max_=1000, is_piecewise=False), ) # 系列配置项 .set_series_opts( # 标签名称显示,默认为True label_opts=opts.LabelOpts(is_show=False, color="blue") ) # 生成本地html文件 .render("世界地图.html") ) create_world_map()
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
这篇文章主要介绍了通过Python 编程语言带您完成使用机器学习进行年龄和性别检测的任务。文中的示例代码讲解详细,感兴趣的小伙伴可以了解一下
内容介绍前言环境依赖代码验证一下前言本文提供将图片按照自定义尺寸进行裁剪的工具方法,一如既往的实用主义。环境依赖ffmpeg环境安装,可以参考:在Windows上安装FFmpeg程序的图文方法本文主要
在Python2和Python3中都提供print()方法来打印信息,但两个版本间的print稍微有差异主要体现在以下几个方面:1 python3中print是一个内置函
大家好,本篇文章主要讲的是Python类的继承与多态详细介绍,感兴趣的同学赶快来看一看吧,对你有帮助的话记得收藏一下,方便下次浏览
装饰器经常被用于有切面需求的场景,较为经典的有插入日志、性能测试、事务处理等。装饰器是解决这类问题的绝佳设计,有了装饰器,我们就可以抽离出大量函数中与函数功能本身无关的雷同代码并继续重用。装饰器的作用就是为已经存在的对象添加额外的功能。
成为群英会员,开启智能安全云计算之旅
立即注册Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008