基于Python如何实现提取图片颜色,方法是什么
Admin 2022-08-04 群英技术资讯 1083 次浏览
在示例照片当中有着各种各样的颜色,我们将通过Python
中的可视化模块以及opencv
模块来识别出图片当中所有的颜色要素,并且将其添加到可视化图表的配色当中
那么按照惯例,第一步一般都是导入模块,可视化用到的模块是matplotlib
模块,我们将图片中的颜色抽取出来之后会保存在颜色映射表中,所以要使用到colormap
模块,同样也需要导入进来
import numpy as np import pandas as pd import matplotlib.pyplot as plt import matplotlib.patches as patches import matplotlib.image as mpimg from PIL import Image from matplotlib.offsetbox import OffsetImage, AnnotationBbox import cv2 import extcolors from colormap import rgb2hex
然后我们先来加载一下图片,代码如下
input_name = 'test_1.png' img = plt.imread(input_name) plt.imshow(img) plt.axis('off') plt.show()
output
我们调用的是extcolors
模块来从图片中提取颜色,输出的结果是RGB
形式呈现出来的颜色,代码如下
colors_x = extcolors.extract_from_path(img_url, tolerance=12, limit = 12) colors_x
output
([((3, 107, 144), 180316),
((17, 129, 140), 139930),
((89, 126, 118), 134080),
((125, 148, 154), 20636),
((63, 112, 126), 18728),
((207, 220, 226), 11037),
((255, 255, 255), 7496),
((28, 80, 117), 4972),
((166, 191, 198), 4327),
((60, 150, 140), 4197),
((90, 94, 59), 3313),
((56, 66, 39), 1669)],
538200)
我们将上述的结果整合成一个DataFrame
数据集,代码如下
def color_to_df(input_color): colors_pre_list = str(input_color).replace('([(', '').split(', (')[0:-1] df_rgb = [i.split('), ')[0] + ')' for i in colors_pre_list] df_percent = [i.split('), ')[1].replace(')', '') for i in colors_pre_list] # 将RGB转换成十六进制的颜色 df_color_up = [rgb2hex(int(i.split(", ")[0].replace("(", "")), int(i.split(", ")[1]), int(i.split(", ")[2].replace(")", ""))) for i in df_rgb] df = pd.DataFrame(zip(df_color_up, df_percent), columns=['c_code', 'occurence']) return df
我们尝试调用上面我们自定义的函数,输出的结果至DataFrame
数据集当中
df_color = color_to_df(colors_x) df_color
output
接下来便是绘制图表的阶段了,用到的是matplotlib
模块,代码如下
fig, ax = plt.subplots(figsize=(90,90),dpi=10) wedges, text = ax.pie(list_precent, labels= text_c, labeldistance= 1.05, colors = list_color, textprops={'fontsize': 120, 'color':'black'} ) plt.setp(wedges, width=0.3) ax.set_aspect("equal") fig.set_facecolor('white') plt.show()
output
从出来的饼图中显示了每种不同颜色的占比,我们更进一步将原图放置在圆环当中,
imagebox = OffsetImage(img, zoom=2.3) ab = AnnotationBbox(imagebox, (0, 0)) ax1.add_artist(ab)
output
最后制作一张调色盘,将原图中的各种不同颜色都罗列开来,代码如下
## 调色盘 x_posi, y_posi, y_posi2 = 160, -170, -170 for c in list_color: if list_color.index(c) <= 5: y_posi += 180 rect = patches.Rectangle((x_posi, y_posi), 360, 160, facecolor = c) ax2.add_patch(rect) ax2.text(x = x_posi+400, y = y_posi+100, s = c, fontdict={'fontsize': 190}) else: y_posi2 += 180 rect = patches.Rectangle((x_posi + 1000, y_posi2), 360, 160, facecolor = c) ax2.add_artist(rect) ax2.text(x = x_posi+1400, y = y_posi2+100, s = c, fontdict={'fontsize': 190}) ax2.axis('off') fig.set_facecolor('white') plt.imshow(bg) plt.tight_layout()
output
这一块儿是实战环节,我们将上述所有的代码封装成一个完整的函数
def exact_color(input_image, resize, tolerance, zoom): output_width = resize img = Image.open(input_image) if img.size[0] >= resize: wpercent = (output_width/float(img.size[0])) hsize = int((float(img.size[1])*float(wpercent))) img = img.resize((output_width,hsize), Image.ANTIALIAS) resize_name = 'resize_'+ input_image img.save(resize_name) else: resize_name = input_image fig.set_facecolor('white') ax2.axis('off') bg = plt.imread('bg.png') plt.imshow(bg) plt.tight_layout() return plt.show() exact_color('test_2.png', 900, 12, 2.5)
output
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
这篇文章主要为大家介绍了Python线程编程之Thread,具有一定的参考价值,感兴趣的小伙伴们可以参考一下,希望能够给你带来帮助
今天教各位小伙伴怎么用python实现字符串转日期,文中有非常详细的代码示例,对正在学习python的小伙伴很有帮助,需要的朋友可以参考下
本文给大家分享的是怎样使用python解析json对象,下面会给大家介绍JSON数据格式特点、常用处理json方法、系列化和反系列化等等内容,具有一定的参考借鉴价值。
这篇文章主要介绍了Python绘制折线图可视化神器pyecharts,文章围绕主题展开详细的内容介绍,具有一定的参考价值,需要的小伙伴可以参考一下
通过pandas的使用,我们经常要交互式地展示表格(dataframe)、分析表格。本文整理了8个常用的配置选项,使用可以提高很多效率,需要的可以参考一下
成为群英会员,开启智能安全云计算之旅
立即注册Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008