如何使用Matplotlib库实现正弦函数与余弦函数
Admin 2022-08-03 群英技术资讯 1101 次浏览
今天这篇我们来学习和了解“如何使用Matplotlib库实现正弦函数与余弦函数”,下文的讲解详细,步骤过程清晰,对大家进一步学习和理解“如何使用Matplotlib库实现正弦函数与余弦函数”有一定的帮助。有这方面学习需要的朋友就继续往下看吧!Matplotlib 可能是 Python 2D-绘图领域使用最广泛的套件。它能让使用者很轻松地将数据图形化,并且提供多样化的输出格式。这里将会探索使用matplotlib 库实现简单的图形绘制。
是取得正弦函数和余弦函数的值:
X 是一个 numpy 数组,包含了从 −π 到 +π 等间隔的 256 个值。C 和 S 则分别是这 256 个值对应的余弦和正弦函数值组成的 numpy 数组。
X = np.linspace(-np.pi, np.pi, 256,endpoint=True) C,S = np.cos(X), np.sin(X)
完整代码如下
import numpy as np import matplotlib.pyplot as plt X = np.linspace(-np.pi, np.pi, 256, endpoint=True) C, S = np.cos(X), np.sin(X) #绘制并显示图形 plt.plot(X, C) plt.plot(X, S) plt.show()

上面我们学习了简单的正弦函数与余弦函数,接下来我们将精益求精,改变颜色与粗细,设置记号,调整边框等。
我们以蓝色和红色分别表示余弦和正弦函数,而后将线条变粗一点。接下来,我们在水平方向拉伸一下整个图。
代码如下(示例):
figure(figsize=(10, 6), dpi=80) plot(X, C, color="blue", linewidth=2.5, linestyle="-") plot(X, S, color="red", linewidth=2.5, linestyle="-")

代码如下(示例):
xmin, xmax = X.min(), X.max() dx = (xmax - xmin) * 0.2 xlim(xmin - dx, xmax + dx)

我们讨论正弦和余弦函数的时候,通常希望知道函数在 ±π 和 ±π2 的值。
xticks( [-np.pi, -np.pi/2, 0, np.pi/2, np.pi]) yticks([-1, 0, +1])

我们可以把 3.142 当做是 π,但毕竟不够精确。当我们设置记号的时候,我们可以同时设置记号的标签。注意这里使用了 LaTeX。
xticks([-np.pi, -np.pi/2, 0, np.pi/2, np.pi],
[r'$-\pi$', r'$-\pi/2$', r'$0$', r'$+\pi/2$', r'$+\pi$'])
yticks([-1, 0, +1],
[r'$-1$', r'$0$', r'$+1$'])

ax = gca()
ax.spines['right'].set_color('none')
ax.spines['top'].set_color('none')
ax.xaxis.set_ticks_position('bottom')
ax.spines['bottom'].set_position(('data', 0))
ax.yaxis.set_ticks_position('left')
ax.spines['left'].set_position(('data', 0))

# 导入 matplotlib 的所有内容(nympy 可以用 np 这个名字来使用)
from pylab import *
# 创建一个 8 * 6 点(point)的图,并设置分辨率为 80
figure(figsize=(8, 6), dpi=80)
# 创建一个新的 1 * 1 的子图,接下来的图样绘制在其中的第 1 块(也是唯一的一块)
subplot(1, 1, 1)
X = np.linspace(-np.pi, np.pi, 256, endpoint=True)
C, S = np.cos(X), np.sin(X)
# 绘制余弦曲线,使用蓝色的、连续的、宽度为 1 (像素)的线条
plot(X, C, color="blue", linewidth=1.0, linestyle="-")
# 绘制正弦曲线,使用绿色的、连续的、宽度为 1 (像素)的线条
plot(X, S, color="green", linewidth=1.0, linestyle="-")
# 设置横轴的上下限
xlim(-4.0, 4.0)
# 设置横轴记号
xticks(np.linspace(-4, 4, 9, endpoint=True))
# 设置纵轴的上下限
ylim(-1.0, 1.0)
# 设置纵轴记号
yticks(np.linspace(-1, 1, 5, endpoint=True))
# 以分辨率 72 来保存图片
# savefig("exercice_2.png",dpi=72)
# 设置颜色与粗细
figure(figsize=(10, 6), dpi=80)
plot(X, C, color="blue", linewidth=2.5, linestyle="-")
plot(X, S, color="red", linewidth=2.5, linestyle="-")
# 设置边框
xmin, xmax = X.min(), X.max()
dx = (xmax - xmin) * 0.2
xlim(xmin - dx, xmax + dx)
# 设置记号
xticks([-np.pi, -np.pi/2, 0, np.pi/2, np.pi])
yticks([-1, 0, +1])
# 设置记号的标签
xticks([-np.pi, -np.pi/2, 0, np.pi/2, np.pi],
[r'$-\pi$', r'$-\pi/2$', r'$0$', r'$+\pi/2$', r'$+\pi$'])
yticks([-1, 0, +1],
[r'$-1$', r'$0$', r'$+1$'])
# 设置xy轴
ax = gca()
ax.spines['right'].set_color('none')
ax.spines['top'].set_color('none')
ax.xaxis.set_ticks_position('bottom')
ax.spines['bottom'].set_position(('data', 0))
ax.yaxis.set_ticks_position('left')
ax.spines['left'].set_position(('data', 0))
# 在屏幕上显示
show()
最终效果

折线图是一种将数据点按照顺序连起来的图形,可以体现变量y随变量x的变化情况。Matplotlib 提供了plot()函数绘制折线图,其语法格式如下:
plt.plot(*args, **kwargs)
常用参数及说明如下:
下面我们将以 某地区周一到周日平均温度变化折线图为例,具体的学习了解折线图的绘制。
import matplotlib.pyplot as plt plt.figure(figsize=(10, 8)) # 周一到周日平均温度数据 plt.plot([1,2,3,4,5,6,7], [12,11,11,13,12,10,10]) plt.show()
效果如下:

我们可以给图表添加一些标签和图例,让图表更加清晰好看,具体方法如下:
import matplotlib.pyplot as plt
# 设置支持中文
plt.rcParams['font.family'] = ['SimHei']
plt.figure(figsize=(10, 8))
plt.plot([1,2,3,4,5,6,7], [12,11,11,13,12,10,10], linestyle="-", marker=".")
plt.xlabel("时间")
plt.ylabel("温度")
plt.yticks([i for i in range(20)][::5])
plt.show()
效果如下:

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
Python编程语言中的 while 循环语句只要给定条件为真,则会重复执行的目标声明或语句。
1、强制等待(sleep)fromtimeimportsleepsleep(3)#强制等待3秒缺点:由于Web加载的速度取决于测试的硬件、网速、服务器的响应时间等因素。如果等待时间太长,容
在嵌入式开发中我们经常会用到串口,串口通信简单,使用起来方便,且适用场景多。本文为大家准备了Python实现串口通信的示例代码,需要的可以参考一下
这篇文章主要介绍了聊聊机器学习的标准化、归一化、正则化、离散化和白化,帮助大家更好的理解和学习使用python进行机器学习,感兴趣的朋友可以了解下
这篇文章主要为大家介绍了Python内建类型str的源码学习,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
成为群英会员,开启智能安全云计算之旅
立即注册Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008