Python中的True和False用法是怎样的
Admin 2022-08-01 群英技术资讯 1026 次浏览
这篇文章主要介绍“Python中的True和False用法是怎样的”,有一些人在Python中的True和False用法是怎样的的问题上存在疑惑,接下来小编就给大家来介绍一下相关的内容,希望对大家解答有帮助,有这个方面学习需要的朋友就继续往下看吧。Python中的 True和 False总是让人困惑,一不小心就会用错,本文总结了三个易错点,分别是逻辑取反、if条件式和pandas.DataFrame.loc切片中的条件式。
在对True和False进行逻辑取反时,不使用~,而要使用not。
因为在Python中,not才是逻辑取反,而~是按位取反。True和False对应的数值是1和0,~True就相当于对1按位取反,结果是-2,not True的结果才是False。
print(True) print(~True) print(not True)
结果是:
True
-2
False
类似的,~False的结果是1,not False 的结果才是True
print(False) print(~False) print(not False)
结果是:
False
-1
True
注:Python中 ~ 按位取反是按照数的补码取反,即:
1 => 补码00000001 => ~按位取反 => 补码11111110 => 2
双重否定的结果是这样的
print(not not True) print(~~True) print(not ~True) print(~(not True))
结果为:
True
1
False
-1
对False的双重否定
print(not not False) print(~~False) print(not ~False) print(~(not False))
结果为:
False
0
False
-2
Python语言中,if后任何非0和非空(null)值为True,0或者null为False。这点和其他语言不相同,使用多种编程语言时很容易混淆。所以即使判断条件是一个负数,也是按照True处理,不会执行else分支。来看例子:
if (-2):
print('a')
else:
print('b')
结果为:a
如果使用了~对True或False取反,则得不到想要的结果:
if (~True): # ~True == -2
print('a')
else:
print('b')
结果为:a
只有用not来取反,才能达到逻辑取反的效果:
if not True:
print('a')
else:
print('b')
结果为:b
pandas.DataFrame.loc 官方文档中是这么说的
Access a group of rows and columns by label(s) or a boolean array.
可以使用布尔列表作为输入,包括使用一个条件式来返回一个布尔列表,例:
首先创建一个DataFrame
import pandas as pd
df = pd.DataFrame([[1, 2], [4, 5], [7, 8]],
index=['cobra', 'viper', 'sidewinder'],
columns=['max_speed', 'shield'])
df
使用条件式来筛选出shield大于6的数据
df.loc[df['shield'] > 6]
筛选出shield域小于等于6的数据,可以
df.loc[df['shield'] <= 6]
也可以用
~ df.loc[~(df['shield'] > 6)]
另一个例子,筛选出index中不包含er两个字母的数据
df.loc[~df.index.str.contains('er')]
需要注意的是,在这里使用df.index.str.contains('er')作为条件筛选时,返回的是pd.Series。
而在pd.Series中, ~操作符重载了,它对布尔类型数据和对数值类型数据的处理分别是逻辑取反和按位取反。
df.index.str.contains('er')
的结果是:
array([False, True, True])
对布尔类型的pd.Series使用~取反,是逻辑取反
~pd.Series([False, True, False])
结果为
True
False
True
dtype: bool
而如果对数值型的pd.Series使用~取反,则是按位取反
~pd.Series([1,2,3])
结果为
-2
-3
-4
dtype: int64
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
这篇文章主要介绍了python中的代码运行时间获取方式,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
接触过Java的朋友对于类应该不陌生,我们在学习python过程中,也会学习到类,那么python的类如何理解?很多新手学习python时,可能对此比较困惑。对此,下面小编就给大家介绍一下python的类以及使用。感兴趣的朋友就继续往下看吧。
这篇文章主要介绍了pandas如何统计某一列或某一行的缺失值数目,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
这篇文章介绍了Python中的Selenium异常处理,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
今天我们来总结一下python装饰器的原理、作用和使用,之前我们以及有详细的了解过python装饰器了,因此这篇文章就带大家简单的回顾一下python装饰器的知识,有需要的朋友可以参考。
成为群英会员,开启智能安全云计算之旅
立即注册关注或联系群英网络
7x24小时售前:400-678-4567
7x24小时售后:0668-2555666
24小时QQ客服
群英微信公众号
CNNIC域名投诉举报处理平台
服务电话:010-58813000
服务邮箱:service@cnnic.cn
投诉与建议:0668-2555555
Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 ICP核准(ICP备案)粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008