Pandas中聚合函数agg是什么,如何使用
Admin 2022-08-01 群英技术资讯 987 次浏览
这篇文章给大家分享的是Pandas中聚合函数agg是什么,如何使用。小编觉得挺实用的,因此分享给大家做个参考,文中的介绍得很详细,而要易于理解和学习,有需要的朋友可以参考,接下来就跟随小编一起了解看看吧。今天看到pandas的聚合函数agg,比较陌生,平时的工作中处理数据的时候使用的也比较少,为了加深印象,总结一下使用的方法,其实还是挺好用的。
DataFrame.agg(func,axis = 0,* args,** kwargs )
func : 函数,函数名称,函数列表,字典{‘行名/列名’,‘函数名’}
使用指定轴上的一个或多个操作进行聚合。

agg是一个聚合函数,聚合函数操作始终是在轴(默认是列轴,也可设置行轴)上执行,不同于 numpy聚合函数
(np.sum() //求和;np.prod() //所有元素相乘;np.mean() //平均值;np.std() //标准差;np.var() //方差;np.median() //中数;np.power() //幂运算;np.sqrt() //开方;np.min() //最小值;np.max() //最大值;np.argmin() //最小值的下标;np.argmax() //最大值的下标;np.inf //无穷大;np.exp(10) //以e为底的指数;np.log(10) //对数)
下面示例展示agg具体用法:
定义一个列表值:
import pandasas pd
df=pd.DataFrame([[1,2,3,4],
[11,22,33,44],
[111,222,333,444],
[1111,2222,3333,4444]
],
columns=['col1','col2','col3','col4'],)#列名
print(df)

在行上聚合这些函数
df_arows=df.agg(['max','min','mean'])
col1 col2 col3 col4
max 1111.0 2222.0 3333.0 4444.0
min 1.0 2.0 3.0 4.0
mean 308.5 617.0 925.5 1234.0

每列不同的聚合
df_columns=df.agg({'col1':['sum','min'],'col2':['max','min'],'col3':['sum','min']})
col1 col2 col3
max NaN 2222.0 NaN
min 1.0 2.0 3 .0
sum 1234.0 NaN 3702.0

注:当某列没有其他聚合函数时,则用NaN填充。
总结
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
这篇博客将学习如何使用霍夫圆变换在图像中找到圆圈,OpenCV使用cv2.HoughCircles()实现霍夫圆变换。内容详细,逻辑清晰,有需要的朋友可以参考,希望大家阅读完这篇文章后能有所收获,那么下面就一起来了解一下吧。
这篇文章主要为大家详细介绍了如何利用pillow和pytesseract来实现验证码的识别,文中的示例代码讲解详细,感兴趣的小伙伴可以了解一下
在Python中不仅可以绘制折线图、柱状图、散点图等常规图外,还支持绘制量场图、频谱图、提琴图、箱型图等特殊图。本文将主要介绍如何绘制流线图,需要的朋友可以参考一下
这篇文章主要介绍了Python实战之画哆啦A梦(超详细步骤),文中有非常详细的代码示例,对正在学习python的小伙伴们有非常好的帮助,需要的朋友可以参考下
这篇文章主要给大家介绍了关于PyCharm调用matplotlib绘图时图像弹出问题的相关资料,文中通过图文介绍的非常详细,对大家学习或者使用PyCharm具有一定的参考学习价值,需要的朋友可以参考下
成为群英会员,开启智能安全云计算之旅
立即注册关注或联系群英网络
7x24小时售前:400-678-4567
7x24小时售后:0668-2555666
24小时QQ客服
群英微信公众号
CNNIC域名投诉举报处理平台
服务电话:010-58813000
服务邮箱:service@cnnic.cn
投诉与建议:0668-2555555
Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 ICP核准(ICP备案)粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008