Tensorflow权重文件怎么理解,有哪些要点
Admin 2022-07-29 群英技术资讯 1370 次浏览
在这篇文章中,我们来学习一下“Tensorflow权重文件怎么理解,有哪些要点”的相关知识,下文有详细的讲解,易于大家学习和理解,有需要的朋友可以借鉴参考,下面就请大家跟着小编的思路一起来学习一下吧。1.解读tensorflow权重文件,透过 tf.train.NewCheckpointReader函数。
2.reader.get_variable_to_shape_map()可以得到权重文件里面的tensor名称。
3.reader.get_tensor(key) 可以得到对应tensor的权重值。

import tensorflow as tf
cpktFileName = r'.\models\resnet_v2_152.ckpt'
reader = tf.train.NewCheckpointReader(cpktFileName)
for key in sorted(reader.get_variable_to_shape_map()):
if key.endswith('weights') or key.endswith('biases'):
keySplits = key.split(r'/')
print(key)
print(reader.get_tensor(key))
第一,每个tensor name都以resnet_v2_152开头
第二,tensor name第二段为block,共有四个block。与网络架构有关。
第三,第三字段为unit,每个block里面unit数量不同。与网络架构有关。
第四,除了组后的平坦层,第四字段都为bottleneck_v2
第五,第五字段为‘conv1',‘conv2',‘conv3',‘shortcut'
第六,第六字段为‘weights' or ‘biases'

补充:tensorflow模型的调用,权重查看
以vc版本的tensorpack说明
每次运行,会有checkpoint、graph、model生成
1、其中,若文件夹已经有checkpoint,且写有自动掉用上次模型,可以在上次的基础上继续训练,否则重新生成,且不能调用之前的模型,即使已经存在
2、每次运行会重新生成graph,即使上次的已经存在,因此调用上次模型与文件夹中是否有graph无关
import numpy as np
import tensorflow as tf
import sys
model = sys.argv[1]
tensor = sys.argv[2]
reader = tf.train.NewCheckpointReader(model)
all_variables = reader.get_variable_to_shape_map()
#reader = pywrap_tensorflow.NewCheckpointReader(ckpt_path)
#param_dict = reader.get_variable_to_shape_map()
for key, val in all_variables.items():
try:
print key, val
#key是网络参数名,val是维度
except:
pass
w0 = reader.get_tensor(tensor)
np.save('con1d_w.npy',w0)
print(type(w0))
print(w0.shape)
print(w0[0])
chekpoint―记录了保存的最新的checkpoint文件以及其它checkpoint文件列表。在inference时,可以通过修改这个文件,指定使用哪个model

MyModel.meta文件保存的是图结构,meta文件是pb(protocol buffer)格式文件,包含变量、op、集合等。
ckpt文件是二进制文件,保存了所有的weights、biases、gradients等变量。在tensorflow 0.11之前,保存在.ckpt文件中。0.11后,通过两个文件保存,如:
MyModel.data-00000-of-00001 MyModel.index
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
这篇文章主要介绍了python使用seaborn绘图直方图displot,密度图,散点图,文章围绕主题展开详细的内容介绍,具有一定的参考价值,需要的小伙伴可以参考一下
这篇文章主要给大家分享Pytorch怎样进行三角函数计算,对新手学习Pytorch函数具有一定的参加和学习价值,感兴趣的朋友可以看一下,希望大家阅读完这篇文章能有所收获,下面我们一起来学习一下吧。
这篇文章主要介绍了Python中的 Numpy 数组形状改变及索引切片,Numpy提供了一个reshape()方法,它可以改变数组的形状,返回一个新的数组,更多相关内容需要的小伙伴可以参考下面文章
一般情况下,python中对一个字符串排序相当麻烦:一、python中的字符串类型是不允许直接改变元素的。必须先把要排序的字符串放在容器里,如
直方图均衡化的目的是将原始图像的灰度级均匀地映射到整个灰度级范围内,得到一个灰度级分布均衡的图像。这种均衡化,即实现了灰度值统计上的概率均衡,也实现了人类视觉系统上(HSV)的视觉均衡。
成为群英会员,开启智能安全云计算之旅
立即注册Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008