python如何用pytorch实现线性回归?
Admin 2021-05-19 群英技术资讯 904 次浏览
pytorch是一个python优先的深度学习框架,更够在强大的GPU加速基础上实现张量和动态神经网络。这篇文章主要带大家了解使用pytorch实现线性回归的步骤,感兴趣的朋友可以参考学习。
线性回归都是包括以下几个步骤:定义模型、选择损失函数、选择优化函数、 训练数据、测试
import torch import matplotlib.pyplot as plt # 构建数据集 x_data= torch.Tensor([[1.0],[2.0],[3.0],[4.0],[5.0],[6.0]]) y_data= torch.Tensor([[2.0],[4.0],[6.0],[8.0],[10.0],[12.0]]) #定义模型 class LinearModel(torch.nn.Module): def __init__(self): super(LinearModel, self).__init__() self.linear= torch.nn.Linear(1,1) #表示输入输出都只有一层,相当于前向传播中的函数模型,因为我们一般都不知道函数是什么形式的 def forward(self, x): y_pred= self.linear(x) return y_pred model= LinearModel() # 使用均方误差作为损失函数 criterion= torch.nn.MSELoss(size_average= False) #使用梯度下降作为优化SGD # 从下面几种优化器的生成结果图像可以看出,SGD和ASGD效果最好,因为他们的图像收敛速度最快 optimizer= torch.optim.SGD(model.parameters(),lr=0.01) # ASGD # optimizer= torch.optim.ASGD(model.parameters(),lr=0.01) # optimizer= torch.optim.Adagrad(model.parameters(), lr= 0.01) # optimizer= torch.optim.RMSprop(model.parameters(), lr= 0.01) # optimizer= torch.optim.Adamax(model.parameters(),lr= 0.01) # 训练 epoch_list=[] loss_list=[] for epoch in range(100): y_pred= model(x_data) loss= criterion(y_pred, y_data) epoch_list.append(epoch) loss_list.append(loss.item()) print(epoch, loss.item()) optimizer.zero_grad() #梯度归零 loss.backward() #反向传播 optimizer.step() #更新参数 print("w= ", model.linear.weight.item()) print("b= ",model.linear.bias.item()) x_test= torch.Tensor([[7.0]]) y_test= model(x_test) print("y_pred= ",y_test.data) plt.plot(epoch_list, loss_list) plt.xlabel("epoch") plt.ylabel("loss_val") plt.show()
使用SGD优化器图像:
使用ASGD优化器图像:
使用Adagrad优化器图像:
使用Adamax优化器图像:
以上就是关于pytorch实现线性回归的步骤以及代码,上述代码仅供大家参考学习,希望文本对大家熟悉pytorch的使用有帮助,更多pytorch相关的内容可以关注其他文章。
文本转载自脚本之家
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
这篇文章主要介绍了Keras 多次加载model出错的解决方案,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
Python中字符串反转常用的五种方法:使用字符串切片、使用递归、使用列表reverse()方法、使用栈和使用for循环。
这篇文章主要介绍了Django中的JWT身份验证的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
关于计算器的实现,不少朋友可能使用JavaScript或者PHP有实现过,是比较简单的。那么我们如果要用python来实现,怎样写一个计算器呢?下面就给大家分享一下实现示例以及代码。
这篇文章介绍了Python使用pyecharts控件绘制图表的方法,文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
成为群英会员,开启智能安全云计算之旅
立即注册Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008