pytorch为何要进行梯度清零,方法是什么
Admin 2022-07-23 群英技术资讯 907 次浏览
调用backward()函数之前都要将梯度清零,因为如果梯度不清零,pytorch中会将上次计算的梯度和本次计算的梯度累加。
这样逻辑的好处是,当我们的硬件限制不能使用更大的bachsize时,使用多次计算较小的bachsize的梯度平均值来代替,更方便,坏处当然是每次都要清零梯度。
optimizer.zero_grad() output = net(input) loss = loss_f(output, target) loss.backward()
补充:Pytorch 为什么每一轮batch需要设置optimizer.zero_grad
CSDN上有人写过原因,但是其实写得繁琐了。
根据pytorch中的backward()函数的计算,当网络参量进行反馈时,梯度是被积累的而不是被替换掉;但是在每一个batch时毫无疑问并不需要将两个batch的梯度混合起来累积,因此这里就需要每个batch设置一遍zero_grad 了。
其实这里还可以补充的一点是,如果不是每一个batch就清除掉原有的梯度,而是比如说两个batch再清除掉梯度,这是一种变相提高batch_size的方法,对于计算机硬件不行,但是batch_size可能需要设高的领域比较适合,比如目标检测模型的训练。
关于这一点可以参考这里
关于backward()的计算可以参考这里
补充:pytorch 踩坑笔记之w.grad.data.zero_()
在使用pytorch实现多项线性回归中,在grad更新时,每一次运算后都需要将上一次的梯度记录清空,运用如下方法:
w.grad.data.zero_() b.grad.data.zero_()
但是,运行程序就会报如下错误:
报错,grad没有data这个属性,
原因是,在系统将w的grad值初始化为none,第一次求梯度计算是在none值上进行报错,自然会没有data属性
修改方法:添加一个判断语句,从第二次循环开始执行求导运算
for i in range(100): y_pred = multi_linear(x_train) loss = getloss(y_pred,y_train) if i != 0: w.grad.data.zero_() b.grad.data.zero_() loss.backward() w.data = w.data - 0.001 * w.grad.data b.data = b.data - 0.001 * b.grad.data
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
paramiko实现了SSHv2协议(底层使用cryptography),用于连接远程服务器并执行相关操作,使用该模块可以对远程服务器进行命令或文件操作,今天通过本文给大家介绍Python远程SSH库Paramiko简介,感兴趣的朋友一起看看吧
用Python处理数据,然后用Folium将它在Leaflet地图上进行可视化。Folium能够将通过Python处理后的数据轻松地在交互式的Leaflet地图上进行可视化展示。它不单单可以在地图上展示数据的分布图,还可以使用Vincent/Vega在地图上加以标记。
这篇文章主要介绍了通过Python实现创建语音识别控制系统,能利用语音识别识别说出来的文字,根据文字的内容来控制图形移动,感兴趣的同学可以关注一下
这篇文章主要为大家详细介绍了使用python实现简单去水印功能,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
本文主要介绍了Django url反向解析的实现,文中通过示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
成为群英会员,开启智能安全云计算之旅
立即注册Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008