NumPy如何实现topk函数操作,方法是什么
Admin 2022-07-22 群英技术资讯 1004 次浏览
这篇文章主要讲解了“NumPy如何实现topk函数操作,方法是什么”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“NumPy如何实现topk函数操作,方法是什么”吧!topK是常用的一个功能,在python中,numpy等计算库使用了丰富的底层优化,对于矩阵计算的效率远高于python的for-loop实现。因此,我们希望尽量用一些numpy函数的组合实现topK。
pytorch 库提供了topk函数,可以将高维数组沿某一维度(该维度共N项),选出最大(最小)的K项并排序。返回排序结果和index信息。奇怪的是,更轻量级的numpy库并没有直接提供 topK 函数。numpy只提供了argpartition 和 partition,可以将最大(最小)的K项排到前K位。以argpartition为例,最小的3项排到了前3位:
>>> x = np.array([3, 5, 6, 4, 2, 7, 1]) >>> x[np.argpartition(x, 3)] array([2, 1, 3, 4, 5, 7, 6])
注意,argpartition实现的是 partial sorting,如上例,前3项和其余项被分开,但是两部分各自都是不排序的!而我们可能更想要topK的几项排好序(其余项则不作要求)。因此,下面提供一种基于argpartition的topK方法。
最简单的方法自然是全排序,然后取前K项。缺点在于,要把topK之外的数据也进行排序,当K << N时较为浪费时间,复杂度为O ( n log n ) O(n \log n)O(nlogn):
def naive_arg_topK(matrix, K, axis=0):
"""
perform topK based on np.argsort
:param matrix: to be sorted
:param K: select and sort the top K items
:param axis: dimension to be sorted.
:return:
"""
full_sort = np.argsort(matrix, axis=axis)
return full_sort.take(np.arange(K), axis=axis)
# Example
>>> dists = np.random.permutation(np.arange(30)).reshape(6, 5)
array([[17, 28, 1, 24, 23, 8],
[ 9, 21, 3, 22, 4, 5],
[19, 12, 26, 11, 13, 27],
[10, 15, 18, 14, 7, 16],
[ 0, 25, 29, 2, 6, 20]])
>>> naive_arg_topK(dists, 2, axis=0)
array([[4, 2, 0, 4, 1, 1],
[1, 3, 1, 2, 4, 0]])
>>> naive_arg_topK(dists, 2, axis=1)
array([[2, 5],
[2, 4],
[3, 1],
[4, 0],
[0, 3]])
对于 np.argpartition 函数,复杂度可能下降到 O ( n log K ) O(n \log K)O(nlogK),很多情况下,K << N,此时naive方法有优化的空间。
以下方法首先选出 topK 项,然后仅对前topK项进行排序(matrix仅限2d-array)。
def partition_arg_topK(matrix, K, axis=0):
"""
perform topK based on np.argpartition
:param matrix: to be sorted
:param K: select and sort the top K items
:param axis: 0 or 1. dimension to be sorted.
:return:
"""
a_part = np.argpartition(matrix, K, axis=axis)
if axis == 0:
row_index = np.arange(matrix.shape[1 - axis])
a_sec_argsort_K = np.argsort(matrix[a_part[0:K, :], row_index], axis=axis)
return a_part[0:K, :][a_sec_argsort_K, row_index]
else:
column_index = np.arange(matrix.shape[1 - axis])[:, None]
a_sec_argsort_K = np.argsort(matrix[column_index, a_part[:, 0:K]], axis=axis)
return a_part[:, 0:K][column_index, a_sec_argsort_K]
# Example
>>> dists = np.random.permutation(np.arange(30)).reshape(6, 5)
array([[17, 28, 1, 24, 23, 8],
[ 9, 21, 3, 22, 4, 5],
[19, 12, 26, 11, 13, 27],
[10, 15, 18, 14, 7, 16],
[ 0, 25, 29, 2, 6, 20]])
>>> partition_arg_topK(dists, 2, axis=0)
array([[4, 2, 0, 4, 1, 1],
[1, 3, 1, 2, 4, 0]])
>>> partition_arg_topK(dists, 2, axis=1)
array([[2, 5],
[2, 4],
[3, 1],
[4, 0],
[0, 3]])
对shape(5000, 100000)的矩阵进行topK排序,测试时间为:
| K | partition(s) | naive(s) |
|---|---|---|
| 10 | 8.884 | 22.604 |
| 100 | 9.012 | 22.458 |
| 1000 | 8.904 | 22.506 |
| 5000 | 11.305 | 22.844 |

补充:python堆排序实现TOPK问题

# 构建小顶堆跳转def sift(li, low, higt):
tmp = li[low]
i = low
j = 2 * i + 1
while j <= higt: # 情况2:i已经是最后一层
if j + 1 <= higt and li[j + 1] < li[j]: # 右孩子存在并且小于左孩子
j += 1
if tmp > li[j]:
li[i] = li[j]
i = j
j = 2 * i + 1
else:
break # 情况1:j位置比tmp小
li[i] = tmp
def top_k(li, k):
heap = li[0:k]
# 建堆
for i in range(k // 2 - 1, -1, -1):
sift(heap, i, k - 1)
for i in range(k, len(li)):
if li[i] > heap[0]:
heap[0] = li[i]
sift(heap, 0, k - 1)
# 挨个输出
for i in range(k - 1, -1, -1):
heap[0], heap[i] = heap[i], heap[0]
sift(heap, 0, i - 1)
return heap
li = [0, 8, 6, 2, 4, 9, 1, 4, 6]
print(top_k(li, 3))
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
PyWebIO提供了一系列命令式的交互函数来在浏览器上获取用户输入和进行输出,将浏览器变成了一个“富文本终端”,可以用于构建简单的Web应用或基于浏览器的GUI应用。本文将利用PyWebIO制作一个网页版的数据查询器,感兴趣的可以学习一下
这篇文章主要介绍了python实战之用emoji表情生成文字,文中有非常详细的代码示例,对正在学习python的小伙伴们有很好地帮助,需要的朋友可以参考下
这篇文章主要为大家详细介绍了基于OpenCV如何实现答题卡识别,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
这篇文章主要为大家介绍了python数据分析matplotlib的基础绘图使用,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
本文主要介绍了pandas实现数据合并的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
成为群英会员,开启智能安全云计算之旅
立即注册Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008