OpenCV实现相机校正使用哪些API,方法是什么
Admin 2022-07-22 群英技术资讯 860 次浏览
这篇文章给大家分享的是“OpenCV实现相机校正使用哪些API,方法是什么”,对大家学习和理解有一定的参考价值和帮助,有这方面学习需要的朋友,接下来就跟随小编一起学习一下吧。1. 相机标定
根据张正友校正算法,利用棋盘格数据校正对车载相机进行校正,计算其内参矩阵,外参矩阵和畸变系数。
标定的流程是:
1、寻找棋盘图中的棋盘角点
rect, corners = cv2.findChessboardCorners(image, pattern_size, flags)
参数:
CV_CALIB_CB_ADAPTIVE_THRESH :使用自适应阈值(通过平均图像亮度计算得到)将图像转换为黑白图,而不是一个固定的阈值。
CV_CALIB_CB_NORMALIZE_IMAGE :在利用固定阈值或者自适应的阈值进行二值化之前,先使用cvNormalizeHist来均衡化图像亮度。
CV_CALIB_CB_FILTER_QUADS :使用其他的准则(如轮廓面积,周长,方形形状)来去除在轮廓检测阶段检测到的错误方块。
返回:
2、检测完角点之后可以将测到的角点绘制在图像上,使用的API是:
cv2.drawChessboardCorners(img, pattern_size, corners, rect)
参数:
注意:如果发现了所有的角点,那么角点将用不同颜色绘制(每行使用单独的颜色绘制),并且把角点以一定顺序用线连接起来。
3、利用定标的结果计算内外参数
ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(object_points, image_points, image_size, None, None)
参数:
返回:
2.1 图像去畸变
上一步中得到相机的内参及畸变系数,利用其进行图像的去畸变,最直接的方法就是调用opencv中的函数得到去畸变的图像:
def img_undistort(img, mtx, dist):
dst = cv2.undistort(img, mtx, dist, None, mtx)
return dst
求畸变的API:
dst = cv2.undistort(img, mtx, dist, None, mtx)
参数:
返回:
import cv2
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import glob
def plot_contrast_imgs(origin_img, converted_img, origin_img_title="origin_img", converted_img_title="converted_img", converted_img_gray=False):
"""
用于对比显示两幅图像
"""
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(15, 20))
ax1.set_title(origin_img_title)
ax1.imshow(origin_img)
ax2.set_title(converted_img_title)
if converted_img_gray==True:
ax2.imshow(converted_img, cmap="gray")
else:
ax2.imshow(converted_img)
plt.show()
# 1. 参数设定:定义棋盘横向和纵向的角点个数并指定校正图像的位置
nx = 9
ny = 6
file_paths = glob.glob("./camera_cal/calibration*.jpg")
# 2. 计算相机的内外参数及畸变系数
def cal_calibrate_params(file_paths):
object_points = [] # 三维空间中的点:3D
image_points = [] # 图像空间中的点:2d
# 2.1 生成真实的交点坐标:类似(0,0,0), (1,0,0), (2,0,0) ....,(6,5,0)的三维点
objp = np.zeros((nx * ny, 3), np.float32)
objp[:, :2] = np.mgrid[0:nx, 0:ny].T.reshape(-1, 2)
# 2.2 检测每幅图像角点坐标
for file_path in file_paths:
img = cv2.imread(file_path)
# 将图像转换为灰度图
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 自动检测棋盘格内4个棋盘格的角点(2白2黑的交点)
rect, corners = cv2.findChessboardCorners(gray, (nx, ny), None)
# 若检测到角点,则将其存储到object_points和image_points
if rect == True:
object_points.append(objp)
image_points.append(corners)
# 2.3 获取相机参数
ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(object_points, image_points, gray.shape[::-1], None, None)
return ret, mtx, dist, rvecs, tvecs
def img_undistort(img, mtx, dist):
"""
图像去畸变
"""
return cv2.undistort(img, mtx, dist, None, mtx)
# 测试去畸变函数的效果
file_paths = glob.glob("./camera_cal/calibration*.jpg")
ret, mtx, dist, rvecs, tvecs = cal_calibrate_params(file_paths)
if mtx.any() != None: # a.any() or a.all()
img = mpimg.imread("./camera_cal/calibration1.jpg")
undistort_img = img_undistort(img, mtx, dist)
plot_contrast_imgs(img, undistort_img)
print("done!")
else:
print("failed")
执行代码:

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
这篇文章主要介绍了Python 权限控制模块 Casbin,Casbin是一个强大的、高效的开源访问控制框架,其权限管理机制支持多种访问控制模型,更多相关内容感兴趣的朋友可以参考下面文章内容
json.loads()用于解析一个有效的JSON字符串并将其转换为Python字典,json.load——()用于从一个文件读取JSON类型的数据,然后转转换成Python字典,本文讲解下python中两者的使用
其实在Python中,我们也可以用numpy进行图片处理,今天一起来学习下吧。
最近工作中遇到了matplotlib保存图片坐标轴不完整的问题,所以这篇文章主要给大家介绍了关于python matplotlib画图时坐标轴重叠显示不全和图片保存时不完整问题的解决方法,需要的朋友可以参考下
pandas中为啥尽量不使用for循环?很多新手可能对此不是很了解,其实相比使用for循环,有一些别的方法和技巧能更好的提升pandas运行时间,下面我们就一起来了解一下。
成为群英会员,开启智能安全云计算之旅
立即注册Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008