Python中feapder框架怎样安装和应用
Admin 2022-07-15 群英技术资讯 1322 次浏览
这篇文章主要讲解了“Python中feapder框架怎样安装和应用”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“Python中feapder框架怎样安装和应用”吧!大家好,我是安果!
众所周知,Python 最流行的爬虫框架是 Scrapy,它主要用于爬取网站结构性数据
今天推荐一款更加简单、轻量级,且功能强大的爬虫框架:feapder
项目地址:
https://github.com/Boris-code/feapder
和 Scrapy 类似,feapder 支持轻量级爬虫、分布式爬虫、批次爬虫、爬虫报警机制等功能
内置的 3 种爬虫如下:
轻量级爬虫,适合简单场景、数据量少的爬虫
分布式爬虫,基于 Redis,适用于海量数据,并且支持断点续爬、自动数据入库等功能
分布式批次爬虫,主要用于需要周期性采集的爬虫
在实战之前,我们在虚拟环境下安装对应的依赖库
# 安装依赖库 pip3 install feapder
我们以最简单的 AirSpider 来爬取一些简单的数据
目标网站:aHR0cHM6Ly90b3BodWIudG9kYXkvIA==
详细实现步骤如下( 5 步)
首先,我们使用「 feapder create -p 」命令创建一个爬虫项目
# 创建一个爬虫项目 feapder create -p tophub_demo
命令行进入到 spiders 文件夹目录下,使用「 feapder create -s 」命令创建一个爬虫
cd spiders # 创建一个轻量级爬虫 feapder create -s tophub_spider 1
其中
以 Mysql 为例,首先我们在数据库中创建一张数据表
# 创建一张数据表 create table topic ( id int auto_increment primary key, title varchar(100) null comment '文章标题', auth varchar(20) null comment '作者', like_count int default 0 null comment '喜欢数', collection int default 0 null comment '收藏数', comment int default 0 null comment '评论数' );
然后,打开项目根目录下的 settings.py 文件,配置数据库连接信息
# settings.py MYSQL_IP = "localhost" MYSQL_PORT = 3306 MYSQL_DB = "xag" MYSQL_USER_NAME = "root" MYSQL_USER_PASS = "root"
最后,创建映射 Item( 可选 )
进入到 items 文件夹,使用「 feapder create -i 」命令创建一个文件映射到数据库
PS:由于 AirSpider 不支持数据自动入库,所以这步不是必须
第一步,首先使「 MysqlDB 」初始化数据库
from feapder.db.mysqldb import MysqlDB class TophubSpider(feapder.AirSpider): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.db = MysqlDB()
第二步,在 start_requests 方法中,指定爬取主链接地址,使用关键字「download_midware 」配置随机 UA
import feapder
from fake_useragent import UserAgent
def start_requests(self):
yield feapder.Request("https://tophub.today/", download_midware=self.download_midware)
def download_midware(self, request):
# 随机UA
# 依赖:pip3 install fake_useragent
ua = UserAgent().random
request.headers = {'User-Agent': ua}
return request
第三步,爬取首页标题、链接地址
使用 feapder 内置方法 xpath 去解析数据即可
def parse(self, request, response):
# print(response.text)
card_elements = response.xpath('//div[@class="cc-cd"]')
# 过滤出对应的卡片元素【什么值得买】
buy_good_element = [card_element for card_element in card_elements if
card_element.xpath('.//div[@class="cc-cd-is"]//span/text()').extract_first() == '什么值得买'][0]
# 获取内部文章标题及地址
a_elements = buy_good_element.xpath('.//div[@class="cc-cd-cb nano"]//a')
for a_element in a_elements:
# 标题和链接
title = a_element.xpath('.//span[@class="t"]/text()').extract_first()
href = a_element.xpath('.//@href').extract_first()
# 再次下发新任务,并带上文章标题
yield feapder.Request(href, download_midware=self.download_midware, callback=self.parser_detail_page,
title=title)
第四步,爬取详情页面数据
上一步下发新的任务,通过关键字「 callback 」指定回调函数,最后在 parser_detail_page 中对详情页面进行数据解析
def parser_detail_page(self, request, response):
"""
解析文章详情数据
:param request:
:param response:
:return:
"""
title = request.title
url = request.url
# 解析文章详情页面,获取点赞、收藏、评论数目及作者名称
author = response.xpath('//a[@class="author-title"]/text()').extract_first().strip()
print("作者:", author, '文章标题:', title, "地址:", url)
desc_elements = response.xpath('//span[@class="xilie"]/span')
print("desc数目:", len(desc_elements))
# 点赞
like_count = int(re.findall('\d+', desc_elements[1].xpath('./text()').extract_first())[0])
# 收藏
collection_count = int(re.findall('\d+', desc_elements[2].xpath('./text()').extract_first())[0])
# 评论
comment_count = int(re.findall('\d+', desc_elements[3].xpath('./text()').extract_first())[0])
print("点赞:", like_count, "收藏:", collection_count, "评论:", comment_count)
使用上面实例化的数据库对象执行 SQL,将数据插入到数据库中即可
# 插入数据库
sql = "INSERT INTO topic(title,auth,like_count,collection,comment) values('%s','%s','%s','%d','%d')" % (
title, author, like_count, collection_count, comment_count)
# 执行
self.db.execute(sql)
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
本文主要介绍了pandas实现数据合并的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
python中munch库的作用是什么?怎样使用?如果对Python中字典熟悉的朋友,应该比较了解munch库,munch库能够直接使用 .,访问和操作字典,这要比原生字典的使用方便很多,下面我们就来具体了解看看munch库。
今天给大家分享的是Pandas库中的transform函数,我们知道Pandas库有很多很强大的功能,接下来来给大家介绍的transform函数就是其中之一,使用transform函数,我们可以实现高效的汇总数据且不改变数据行数,接下来我们就来详细的了解一下transform函数。
最近因为项目原因需要编写数据库设计文档,但是由于数据表太多,手动编写耗费的时间太久,所以搞了一个简单的脚本快速生成数据库结构,保存到word文档中。安装pymysql和documentpipinst
循环用于重复执行一些程序块。从上一讲的选择结构,我们已经看到了如何用缩进来表示程序块的隶属关系。循环也会用到类似的写法。for循环for
成为群英会员,开启智能安全云计算之旅
立即注册Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008