opencv灰度图转彩色怎样做,有什么要注意的
Admin 2022-09-06 群英技术资讯 810 次浏览
这篇文章给大家分享的是opencv灰度图转彩色怎样做,有什么要注意的。小编觉得挺实用的,因此分享给大家做个参考,文中的介绍得很详细,而要易于理解和学习,有需要的朋友可以参考,接下来就跟随小编一起了解看看吧。如果摄像头本来就得到3维度红外图那就不用处理直接可以用:
import cv2 cap = cv2.VideoCapture(0) ret, image_np = cap.read()

直接转成单通道的灰度图看看能不能用:
#如果后面不写0,那就是默认彩色的
# 第一种方式
image = cv2.imread('***/timg4.jpg',0)
#第二种方式
#dst=cv2.cvtColor(src,cv2.COLOR_BGR2GRAY)
detecotr = TOD()
detecotr.detect(image)
# 或者视频转换方式如下
ret, image_np = cap.read()
image_np=cv2.cvtColor(image_np,cv2.COLOR_BGR2GRAY)
上面两种方式得到的数据是不完全相同的,网上尚未查找到具体原因,通过对读取到的ndArray数据对比,发现存在不完全相同的数据。
观察直接转成1通道的图像:

直接转成了1通道灰度图喂进去神经网络不行,因为只有1通道,必须经过如下的处理;
image_np=cv2.cvtColor(image_np,cv2.COLOR_GRAY2BGR)
上面代码可以得到3通道灰度图,就是把灰度图的1通道复制三遍,然后就可以喂进网络了:

红外图像和灰度图像本身就不是在同一分类标准下得到的概念。
红外图像是红外成像设备采集目标在红外波段的辐射形成的影像,这个图像可专以是灰度图像,也可以彩色图像。同样的道理,可见光图像可以是灰度属图像,也可以彩色图像。
灰度图像是相对彩色图像而言的。灰度图像没有颜色,灰度值由0变化至255时,图像由黑变白。
再将上述的3通道灰度值转换为伪彩图,观察结果:
ret, image_np = cap.read() image_np=cv2.cvtColor(image_np,cv2.COLOR_BGR2GRAY) #image_np=cv2.cvtColor(image_np,cv2.COLOR_GRAY2BGR) image_np = cv2.applyColorMap(image_np, cv2.COLORMAP_JET)

对于伪彩图有不同的伪彩图方式,各个函数如下:
# COLORMAP_AUTUMN = 0, # COLORMAP_BONE = 1, # COLORMAP_JET = 2, # COLORMAP_WINTER = 3, # COLORMAP_RAINBOW = 4, # COLORMAP_OCEAN = 5, # COLORMAP_SUMMER = 6, # COLORMAP_SPRING = 7, # COLORMAP_COOL = 8, # COLORMAP_HSV = 9, # COLORMAP_PINK = 10, # COLORMAP_HOT = 11
在使用模型框架的时候,如果是使用tensorflow object detection API,需要将1通道的灰度图转成3通道(唯一通道复制三遍)来训练和检测;
为什么不直接使用者通道的灰度图来做呢,这样是不是能提高性能呢?
不是,因为这样对于提高性能和速度没有意义,它只影响了卷积神经网络的第一层而已,后续层的计算量和参数量没有丝毫影响,这样的影响等同于没有,如果真的考虑性能和速度,直接更改模型更可靠。
from PIL import Image
import os
path = r'图片存储的路径'
newpath = r'转换后存储图片的路径'
def RGBtoGray(path):
files = os.listdir(path)
for file in files:
imgpath = path + '/' + file
#print(imgpath)
#
im = Image.open(imgpath).convert('RGB')
#resize将图像像素转换成自己需要的像素大小
img = im.resize((512, 512))
dirpath = newpath
file_name, file_extend = os.path.splitext(f)
dst = os.path.join(os.path.abspath(dirpath), file_name + '.jpg')
img.save(dst)
if __name__ == "__main__":
RGBtoGray(path)
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
这篇文章主要介绍了深度解析Django REST Framework批量操作,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
这篇文章主要介绍了python中Flask Web 表单的使用方法介绍,表单的操作是Web程序开发中最核心的模块之一,绝大多数的动态交互功能都是通过表单的形式实现的。更多介绍需要的小伙伴可以参考下面文章内容
如果字典中存储了一些值,我想要取出来该怎么操作呢?取出字典中所有的键-值对时,可以使用items()返回一个键值对列表,并配合for循环进行遍历
这篇文章主要介绍了pygame实现井字棋之第一步绘制九宫格,文中有非常详细的代码示例,对正在学习python的小伙伴们有非常好的帮助,需要的朋友可以参考下
这篇文章主要介绍了tensorflow中的数据类型dtype用法说明,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
成为群英会员,开启智能安全云计算之旅
立即注册关注或联系群英网络
7x24小时售前:400-678-4567
7x24小时售后:0668-2555666
24小时QQ客服
群英微信公众号
CNNIC域名投诉举报处理平台
服务电话:010-58813000
服务邮箱:service@cnnic.cn
投诉与建议:0668-2555555
Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008