Spark部署模式分别是哪些,怎么理解
Admin 2022-06-10 群英技术资讯 563 次浏览
Spark部署模式分为Local模式(本地单机模式)和集群模式,在Local模式下,常用于本地开发程序与测试,而集群模式又分为Standalone模式(集群单机模式)、Yarn模式和Mesos模式,关于这三种集群模式的相关介绍具体如下:
Standalone模式被称为集群单机模式。Spark框架与Hadoop1.0版本框架类似,本身都自带了完整的资源调度管理服务,可以独立部署到一个集群中,无需依赖任何其他的资源管理系统,在该模式下,Spark集群架构为主从模式,即一台Master节点与多台Slave节点,Slave节点启动的进程名称为Worker,此时集群会存在单点故障问题,后续将在Spark HA集群部署小节讲解利用Zookeeper解决单点问题的方案。
Yarn模式被称为Spark on Yarn模式,即把Spark作为一个客户端,将作业提交给Yarn服务,由于在生产环境中,很多时候都要与Hadoop使用同一个集群,因此采用Yarn来管理资源调度,可以有效提高资源利用率,Yarn模式又分为Yarn Cluster模式和Yarn Client模式,具体介绍如下:
lYarn Cluster:用于生产环境,所有的资源调度和计算都在集群上运行。
lYarn Client:用于交互、调试环境。
Mesos模式被称为Spark on Mesos模式,Mesos与Yarn同样是一款资源调度管理系统,可以为Spark提供服务,由于Spark与Mesos存在密切的关系,因此在设计Spark框架时充分考虑到了对Mesos的集成,但如果你同时运行Hadoop和Spark,从 兼 容 性 的 角 度 来 看 ,Spark on Yarn是更好的选择。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
这篇文章主要为大家详细介绍了如何利用Python语言绘制好看的数据动态图,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起动手尝试一下
我们有时候需要对列表list合并操作,那么使用python列表合并的方法有哪些呢?下面给大家分享四个列表list合并的方法,其中的代码都在Python3下测试通过,下面我们就一起来看看吧。
这篇文章主要介绍了Python使用scipy保存图片的一些注意点,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
这篇文章主要为大家详细介绍了如何让Matplotlib、Seaborn的静态数据图动起来,变得栩栩如生。文中的示例代码讲解详细,感兴趣的小伙伴可以学习一下
继承用于指定一个类将从其父类获取其大部分或全部功能。 它是面向对象编程的一个特征。 这是一个非常强大的功能,方便用户对现有类进行几个或多个修改来创建一个新的类。新类称为子类或派生类,从其继承属性的主类称为基类或父类。
成为群英会员,开启智能安全云计算之旅
立即注册Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008