Python运算效率怎么样,具备什么特点
Admin 2022-05-30 群英技术资讯 886 次浏览
这篇文章给大家分享的是“Python运算效率怎么样,具备什么特点”,对大家学习和理解有一定的参考价值和帮助,有这方面学习需要的朋友,接下来就跟随小编一起学习一下吧。原因:1、python是动态语言;2、python是解释执行,但是不支持JIT;3、python中一切都是对象,每个对象都需要维护引用计数,增加了额外的工作。4、python GIL;5、垃圾回收。

当我们提到一门编程语言的效率时:通常有两层意思,第一是开发效率,这是对程序员而言,完成编码所需要的时间;另一个是运行效率,这是对计算机而言,完成计算任务所需要的时间。编码效率和运行效率往往是鱼与熊掌的关系,是很难同时兼顾的。不同的语言会有不同的侧重,python语言毫无疑问更在乎编码效率,life is short,we use python。
虽然使用python的编程人员都应该接受其运行效率低的事实,但python在越多越来的领域都有广泛应用,比如科学计算 、web服务器等。程序员当然也希望python能够运算得更快,希望python可以更强大。
首先,python相比其他语言具体有多慢,这个不同场景和测试用例,结果肯定是不一样的。这个网址给出了不同语言在各种case下的性能对比,这一页是python3和C++的对比,下面是两个case:

从上图可以看出,不同的case,python比C++慢了几倍到几十倍。
python运算效率低,具体是什么原因呢,下列罗列一些:
第一:python是动态语言
一个变量所指向对象的类型在运行时才确定,编译器做不了任何预测,也就无从优化。举一个简单的例子: r = a + b。 a和b相加,但a和b的类型在运行时才知道,对于加法操作,不同的类型有不同的处理,所以每次运行的时候都会去判断a和b的类型,然后执行对应的操作。而在静态语言如C++中,编译的时候就确定了运行时的代码。
另外一个例子是属性查找,关于具体的查找顺序在《python属性查找》中有详细介绍。简而言之,访问对象的某个属性是一个非常复杂的过程,而且通过同一个变量访问到的python对象还都可能不一样(参见Lazy property的例子)。而在C语言中,访问属性用对象的地址加上属性的偏移就可以了。
第二:python是解释执行,但是不支持JIT(just in time compiler)。虽然大名鼎鼎的google曾经尝试Unladen Swallow 这个项目,但最终也折了。
第三:python中一切都是对象,每个对象都需要维护引用计数,增加了额外的工作。
第四:python GIL,GIL是Python最为诟病的一点,因为GIL,python中的多线程并不能真正的并发。如果是在IO bound的业务场景,这个问题并不大,但是在CPU BOUND的场景,这就很致命了。所以笔者在工作中使用python多线程的情况并不多,一般都是使用多进程(pre fork),或者在加上协程。即使在单线程,GIL也会带来很大的性能影响,因为python每执行100个opcode(默认,可以通过sys.setcheckinterval()设置)就会尝试线程的切换,具体的源代码在ceval.c::PyEval_EvalFrameEx。
第五:垃圾回收,这个可能是所有具有垃圾回收的编程语言的通病。python采用标记和分代的垃圾回收策略,每次垃圾回收的时候都会中断正在执行的程序,造成所谓的顿卡。infoq上有一篇文章,提到禁用Python的GC机制后,Instagram性能提升了10%。感兴趣的读者可以去细读。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
这篇文章主要给大家分享python的mro算法的内容,可能一些朋友对mro不是很了解,但是没关系,下文有详细的介绍,及实例代码供大家参考,对python的mro算法感兴趣的朋友接下来就跟随小编一起来学习一下吧。
这篇文章主要为大家介绍了Pytorch卷积神经网络迁移学习的目标实现代码及好处介绍,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
浏览器到WSGI Server:浏览器发送的请求会先到WSGI Server;environ:WSGI Server会将HTTP请求中的参数等信息封装到environ(一个字典)中。
这篇文章主要介绍了9个提高 Python 编程的小技巧,下文分享python编程技巧,需要的小伙伴可以参考一下,希望对你的学习有所帮助
这篇文章主要介绍了Python 制作子弹图,众所周知,Python 的应用是非常广泛的,今天我们就通过 matplotlib 库学习下如何制作精美的子弹图,需要的朋友可以参考一下
成为群英会员,开启智能安全云计算之旅
立即注册关注或联系群英网络
7x24小时售前:400-678-4567
7x24小时售后:0668-2555666
24小时QQ客服
群英微信公众号
CNNIC域名投诉举报处理平台
服务电话:010-58813000
服务邮箱:service@cnnic.cn
投诉与建议:0668-2555555
Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008