Python中h5py模块用作什么的,如何使用
Admin 2022-08-24 群英技术资讯 705 次浏览
今天这篇我们来学习和了解“Python中h5py模块用作什么的,如何使用”,下文的讲解详细,步骤过程清晰,对大家进一步学习和理解“Python中h5py模块用作什么的,如何使用”有一定的帮助。有这方面学习需要的朋友就继续往下看吧!本文只是简单的对h5py库的基本创建文件,数据集和读取数据的方式进行介绍!如果读者需要进一步详细的学习h5py的更多知识,请参考h5py的官方文档。
h5py简单介绍
一个HDF5文件是一种存放两类对象的容器:dataset和group. Dataset是类似于数组的数据集,而group是类似文件夹一样的容器,它好比python中的字典,有键(key)和值(value),存放dataset和其他group。在使用h5py的时候需要牢记一句话:
groups类比字典,dataset类比Numpy中的数组。
HDF5的dataset虽然与Numpy的数组在接口上很相近,但是支持更多对外透明的
存储特征,如:数据压缩,误差检测,分块传输。
h5py创建的文件后缀名为:
.hdf5
h5py模块的使用主要分成两步走:
.hdf5类型文件句柄(创建一个对象) # 读取文件把“w”改成“r”f=h5py.File("myh5py.hdf5","w")
创建数据(dataset):
f.create_dataset(self, name, shape=None, dtype=None, data=None, **kwds)
创建组(group):
create_group(self, name, track_order=False)
import h5py
#要是读取文件的话,就把w换成r
f=h5py.File("myh5py.hdf5","w")
在当前目录下会生成一个myh5py.hdf5文件
import h5py
f=h5py.File("myh5py.hdf5","w")
#deset1是数据集的name,(20,)代表数据集的shape,i代表的是数据集的元素类型
d1=f.create_dataset("dset1", (20,), 'i')
for key in f.keys():
print(key)
print(f[key].name)
print(f[key].shape)
print(f[key].value)
输出:
dset1
/dset1
(20,)
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
这里我们仅仅创建了一个存放20个整型元素的数据集,并没有赋值,默认全是0,如何赋值呢,看下面的代码。
import h5py
import numpy as np
f=h5py.File("myh5py.hdf5","w")
d1=f.create_dataset("dset1",(20,),'i')
#赋值
d1[...]=np.arange(20)
#或者我们可以直接按照下面的方式创建数据集并赋值
f["dset2"]=np.arange(15)
for key in f.keys():
print(f[key].name)
print(f[key].value)
输出:
/dset1
[ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19]
/dset2
[ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14]
如果我们有现成的numpy数组,那么可以在创建数据集的时候就赋值,这个时候就不必指定数据的类型和形状了,只需要把数组名传给参数data。
import h5py
import numpy as np
f=h5py.File("myh5py.hdf5","w")
a=np.arange(20)
d1=f.create_dataset("dset1",data=a)
for key in f.keys():
print(f[key].name)
print(f[key].value)
输出:
/dset1
[ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19]
现在把这几种创建的方式混合写下。看下面的代码
import h5py
import numpy as np
f=h5py.File("myh5py.hdf5","w")
#分别创建dset1,dset2,dset3这三个数据集
a=np.arange(20)
d1=f.create_dataset("dset1",data=a)
d2=f.create_dataset("dset2",(3,4),'i')
d2[...]=np.arange(12).reshape((3,4))
f["dset3"]=np.arange(15)
for key in f.keys():
print(f[key].name)
print(f[key].value)
输出:
/dset1
[ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19]
/dset2
[[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]]
/dset3
[ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14]
3. 创建group组
import h5py
import numpy as np
f=h5py.File("myh5py.hdf5","w")
#创建一个名字为bar的组
g1=f.create_group("bar")
#在bar这个组里面分别创建name为dset1,dset2的数据集并赋值。
g1["dset1"]=np.arange(10)
g1["dset2"]=np.arange(12).reshape((3,4))
for key in g1.keys():
print(g1[key].name)
print(g1[key].value)
输出:
/bar/dset1
[0 1 2 3 4 5 6 7 8 9]
/bar/dset2
[[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]]
注意观察数据集dset1和dset2的名字是不是有点和前面的不一样,如果是直接创建的数据集,不在任何组里面,那么它的名字就是/+名字,现在这两个数据集都在bar这个group(组)里面,名字就变成了/bar+/名字,是不是有点文件夹的感觉!继续看下面的代码,你会对group和dataset的关系进一步了解。
import h5py
import numpy as np
f=h5py.File("myh5py.hdf5","w")
#创建组bar1,组bar2,数据集dset
g1=f.create_group("bar1")
g2=f.create_group("bar2")
d=f.create_dataset("dset",data=np.arange(10))
#在bar1组里面创建一个组car1和一个数据集dset1。
c1=g1.create_group("car1")
d1=g1.create_dataset("dset1",data=np.arange(10))
#在bar2组里面创建一个组car2和一个数据集dset2
c2=g2.create_group("car2")
d2=g2.create_dataset("dset2",data=np.arange(10))
#根目录下的组和数据集
print(".............")
for key in f.keys():
print(f[key].name)
#bar1这个组下面的组和数据集
print(".............")
for key in g1.keys():
print(g1[key].name)
#bar2这个组下面的组和数据集
print(".............")
for key in g2.keys():
print(g2[key].name)
#顺便看下car1组和car2组下面都有什么,估计你都猜到了为空。
print(".............")
print(c1.keys())
print(c2.keys())
输出:
.............
/bar1
/bar2
/dset
.............
/bar1/car1
/bar1/dset1
.............
/bar2/car2
/bar2/dset2
.............
[]
[]
Reference:
1、blog.csdn.net/csdn1569884…
2、blog.csdn.net/yudf2010/ar…
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
这篇文章主要介绍了Python3 DataFrame缺失值的处理,包括缺失值的判断缺失值数据的过滤及缺失值数据的填充,本文通过示例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
这篇文章主要介绍了如何用python 做逐步回归,帮助大家更好的理解和学习使用python,感兴趣的朋友可以了解下
这篇文章主要介绍了一文了解Python 流程控制,Python 中有while和for两种循环机制,其中while循环是条件循环,文章通过展开循环内容展开控制流程详情,需要的小伙伴可以参考一下
这篇文章主要为大家详细介绍了python面向过程实现飞机大战,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
今天给大家分享的是关于怎么样用python实现Thrift服务端的内容,本文有实例和详细注释供大家参考,对大家理解python实现Thrift有一定的帮助,接下来跟随小编一起看看吧
成为群英会员,开启智能安全云计算之旅
立即注册Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008