Python中文件读取的基本方法操作是怎样
Admin 2022-05-28 群英技术资讯 1153 次浏览
import numpy as np a=np.random.randint(0,10,size=(3,4)) np.savetext("score.csv",a,deliminter=",")
a:自己随便创建的数组,deliminter:分隔符,score:要读取的文件名
或者
import numpy as np data=np.loadtxt("score.csv",delimiter=",",skiprows=1,dtype=str)
skiprows:跳过第一行,dtype:数据读出的类型为字符型
import csv with open("score.csv",'r')as fp: reader=csv.reader(fp) for x in reader: print(x)
reader:迭代器
import numpy as np c=np.random.randint(0,10,size=(2,3)) np.save("文件名",c) c1=np.load("文件名.npy")
import pandas as pd df=pd.read_csv("exl.csv")
或者
import pandas as pd pd.read_table("exl.csv",sep=',')
sep
:分隔符
import pandas as pd BS=pd.read_clipboard
import pandas as pd df=read_excel("exl.xlsx")
import os os.chdir()
chdir()中写上你想读取文件的目录,表示将目录转化到你想读取文件的目录.
read_csv
从文件,URL,文件型对象中加载带分隔符的数据。默认分隔符为逗号read_table
同上,但默认分隔符为制表符(“t”)read_fwf
读取定宽列格式数据(无分隔符)read_clipboard
读取剪贴板中的数据read_excel
从Excel 或xlsx文件中读取表格数据read_hdf
读取pandas写的HDF5文件read_html
读取html文档中的所以表格read_json
读取json字符串中的数据read_msgpack
二进制格式编码的pandas数据read_pickle
读取python pickle 格式中存储的任意对象read_sas
读取存储于SAS系统自定义存储格式为SAS数据集read_sql
读取SQL查询结果为pandas的DataFrameread_stata
读取stata文件格式的数据集免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
在实际的算法与程序开发中,经常需要面对的场景就是对同一目录内的文件进行批量操作。并且很多时候目录中的文件明明是有规律的,同时希望程序在进行处理时也是按照一定的顺序进行。
最近工作中遇到了matplotlib保存图片坐标轴不完整的问题,所以这篇文章主要给大家介绍了关于python matplotlib画图时坐标轴重叠显示不全和图片保存时不完整问题的解决方法,需要的朋友可以参考下
len()函数返回对象的长度参数可以是序列(字符串str、元组tuple、列表list)或集合(字典dict、集合set或冻结集合frozenset)
python是没有三元描述符的,但是可以通过模拟的实现。其中一种是:(X and V1) or V2正常情况下是不会有错误的,但是文章中也提到了,当
这篇文章主要为大家详细介绍了python单向链表实例,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
成为群英会员,开启智能安全云计算之旅
立即注册Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008