Python小波变换去噪的原理怎么理解
Admin 2022-05-23 群英技术资讯 1031 次浏览
这篇文章主要介绍了Python小波变换去噪的原理怎么理解相关知识,内容详细易懂,操作简单快捷,具有一定借鉴价值,相信大家阅读完这篇Python小波变换去噪的原理怎么理解文章都会有所收获,下面我们一起来看看吧。信号产生的小波系数含有信号的重要信息,将信号经小波分解后小波系数较大,噪声的小波系数较小,并且噪声的小波系数要小于信号的小波系数,通过选取一个合适的阀值,大于阀值的小波系数被认为是有信号产生的,应予以保留,小于阀值的则认为是噪声产生的,置为零从而达到去噪的目的。
小波阀值去噪的基本问题包括三个方面:小波基的选择,阀值的选择,阀值函数的选择。
(1) 小波基的选择:通常我们希望所选取的小波满足以下条件:正交性、高消失矩、紧支性、对称性或反对称性。但事实上具有上述性质的小波是不可能存在的,因为小波是对称或反对称的只有Haar小波,并且高消失矩与紧支性是一对矛盾,所以在应用的时候一般选取具有紧支的小波以及根据信号的特征来选取较为合适的小波。
(2) 阀值的选择:直接影响去噪效果的一个重要因素就是阀值的选取,不同的阀值选取将有不同的去噪效果。目前主要有通用阀值(VisuShrink)、SureShrink阀值、Minimax阀值、BayesShrink阀值等。
(3) 阀值函数的选择:阀值函数是修正小波系数的规则,不同的反之函数体现了不同的处理小波系数的策略。最常用的阀值函数有两种:一种是硬阀值函数,另一种是软阀值函数。还有一种介于软、硬阀值函数之间的Garrote函数。
另外,对于去噪效果好坏的评价,常用信号的信噪比(SNR)与估计信号同原始信号的均方根误差(RMSE)来判断。
#coding=gbk #使用小波分析进行阈值去噪声,使用pywt.threshold import pywt import numpy as np import pandas as pd import matplotlib.pyplot as plt import math data = np.linspace(1, 10, 10) print(data) # [ 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.] # pywt.threshold(data, value, mode, substitute) mode 模式有4种,soft, hard, greater, less; substitute是替换值可以点进函数里看,data/np.abs(data) * np.maximum(np.abs(data) - value, 0) data_soft = pywt.threshold(data=data, value=6, mode='soft', substitute=12) print(data_soft) # [12. 12. 12. 12. 12. 0. 1. 2. 3. 4.] 将小于6 的值设置为12, 大于等于6 的值全部减去6 data_hard = pywt.threshold(data=data, value=6, mode='hard', substitute=12) print(data_hard) # [12. 12. 12. 12. 12. 6. 7. 8. 9. 10.] 将小于6 的值设置为12, 其余的值不变 data_greater = pywt.threshold(data, 6, 'greater', 12) print(data_greater) # [12. 12. 12. 12. 12. 6. 7. 8. 9. 10.] 将小于6 的值设置为12,大于等于阈值的值不变化 data_less = pywt.threshold(data, 6, 'less', 12) print(data_less) # [ 1. 2. 3. 4. 5. 6. 12. 12. 12. 12.] 将大于6 的值设置为12, 小于等于阈值的值不变
三,在python中使用ecg心电信号进行小波去噪实验#-*-coding:utf-8-*-
import matplotlib.pyplot as plt
import pywt
import math
import numpy as np
#get Data
ecg=pywt.data.ecg() #生成心电信号
index=[]
data=[]
coffs=[]
for i in range(len(ecg)-1):
X=float(i)
Y=float(ecg[i])
index.append(X)
data.append(Y)
#create wavelet object and define parameters
w=pywt.Wavelet('db8')#选用Daubechies8小波
maxlev=pywt.dwt_max_level(len(data),w.dec_len)
print("maximum level is"+str(maxlev))
threshold=0 #Threshold for filtering
#Decompose into wavelet components,to the level selected:
coffs=pywt.wavedec(data,'db8',level=maxlev) #将信号进行小波分解
for i in range(1,len(coffs)):
coffs[i]=pywt.threshold(coffs[i],threshold*max(coeffs[i]))
datarec=pywt.waverec(coffs,'db8')#将信号进行小波重构
mintime=0
maxtime=mintime+len(data)
print(mintime,maxtime)
plt.figure()
plt.subplot(3,1,1)
plt.plot(index[mintime:maxtime], data[mintime:maxtime])
plt.xlabel('time (s)')
plt.ylabel('microvolts (uV)')
plt.title("Raw signal")
plt.subplot(3, 1, 2)
plt.plot(index[mintime:maxtime], datarec[mintime:maxtime])
plt.xlabel('time (s)')
plt.ylabel('microvolts (uV)')
plt.title("De-noised signal using wavelet techniques")
plt.subplot(3, 1, 3)
plt.plot(index[mintime:maxtime],data[mintime:maxtime]-datarec[mintime:maxtime])
plt.xlabel('time (s)')
plt.ylabel('error (uV)')
plt.tight_layout()
plt.show()

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
缓存是一种优化技术,可以在应用程序中使用它来将最近或经常使用的数据保存在内存中,通过这种方式来访问数据的速度比直接读取磁盘文件的高很多
通常来说groupby操作可以分为三部分:分割数据,应用变换和和合并数据,本文将会详细讲解Pandas中的groupby操作,感兴趣的朋友一起看看吧
Matplotlib是Python的绘图库,它能让使用者很轻松地将数据图形化,并且提供多样化的输出格式。本文将为大家介绍如何用matplotlib绘制饼图和堆叠图,感兴趣的朋友可以学习一下
SparkSQL不仅能够查询MySQL数据库中的数据,还可以向表中插人新的数据,实现方式的具体代码如文件4-5所示。
这篇文章主要介绍了Python可视化神器pyecharts绘制仪表盘,文章围绕主题展开详细的内容介绍,具有一定的参考价值,需要的朋友可以参考一下
成为群英会员,开启智能安全云计算之旅
立即注册关注或联系群英网络
7x24小时售前:400-678-4567
7x24小时售后:0668-2555666
24小时QQ客服
群英微信公众号
CNNIC域名投诉举报处理平台
服务电话:010-58813000
服务邮箱:service@cnnic.cn
投诉与建议:0668-2555555
Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 ICP核准(ICP备案)粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008