用python如何实现求解微分线性方程?
Admin 2021-10-09 群英技术资讯 898 次浏览
用python如何实现求解微分线性方程?python的功能还是比较强大的,这篇文章我们就来看看用Python编写稀疏线性方程组的求解方法,下文有实例代码供大家参考,感兴趣的朋友就继续往下看吧。
简单的方程如: AX=b
其中

python有很多功能库,这些库对于编程很有帮助,可以在pycharm的Project Interpreter导入库,例如numpy、os、scipy等比较基础的库,
import numpy as np
from scipy import linalg
import os
#输入矩阵维数
print("你好,这里是计算稀疏矩阵线性方程组的地方,非诚勿扰!")
dism_num = input("你的A矩阵维数是:")
dism_num = int(dism_num)
print("接下来请你依次输入矩阵的行向量(注意只能输入英文逗号,):")
A =[]
#X =[]
for i in range(1,dism_num+1):
a=input("第"+str(i)+"行向量是:")
alist = a.split(",")
alist = [int(alist[j]) for j in range(len(alist))]
A.append(alist)
print("你所输入的矩阵行向量是:")
print(A)
#记录输入的X矩阵
#输入向量b
print("输入b向量")
b = input("b向量是:")
b_list = b.split(",")
b_list = [int(b_list[j]) for j in range(len(b_list))]
print("你输入的b向量是:")
print(b_list)
#记录b向量
#询问是否计算单个答案(单元素)
ask = input("是否只需求解单个值:(是或否)")
while(True):
if ask == '是':
ask_a = 'T'
ask_num = input("请继续输入你所需要的答案序号:")
ask_num = int(ask_num)
if ask_num<=dism_num and ask_num>0:
print("OK,马上帮你计算")
break
else:
print("输入的值超出矩阵维数,请重新输入:")
if ask == '否':
ask_a = 'F'
break
#询问完成,只有当用户输入正确的序号才可以进行计算,否则重新询问
#开始计算x向量了
A = np.array(A)
b = np.array(b_list)
x = linalg.solve(A,b)
print("计算的结果的:")
if ask_a == 'F':
print(x)
if ask_a =='T':
print(x[ask_num-1])
#计算完x向量了
os.system("pause")
#用于py文件结束玩暂停显示结果
其基本流程如图:

运行结果如下:

补充:python 多线程稀疏矩阵乘法

import threading, time
import numpy as np
res = []
class MyThread(threading.Thread):
def __init__(self,i,j,m1,m2):
threading.Thread.__init__(self)
self.x, self.y = i,j
self.m1, self.m2 = m1, m2
def run(self):
global res, lock
if lock.acquire():
m1 = self.m1[self.m1[:,0]==self.x]
m2 = self.m2[self.m2[:,1]==self.y]
value = 0.
for item1 in m1:
for item2 in m2:
if item1[1] == item2[0]:
value += item1[2]*item2[2]
res.append([self.x,self.y,value])
lock.release()
if "__main__" == __name__:
m1 = [[2,2],[0,0,1],[0,1,2],[1,0,3],[1,1,4]]
m2 = [[2,3],[0,0,2],[0,2,1],[1,2,3],[1,1,4]]
s1, s2 = m1[0], m2[0]
assert s1[1]==s2[0], 'mismatch'
m1_value = np.array(m1[1:])
m2_value = np.array(m2[1:])
rows, cols = s1[0], s2[1]
res.append([rows, cols])
ThreadList = []
lock = threading.Lock()
for i in range(rows):
for j in range(cols):
t = MyThread(i,j,m1_value,m2_value)
ThreadList.append(t)
for t in ThreadList:
t.start()
for t in ThreadList:
t.join()
print (res)
以上就是关于用python如何实现求解微分线性方程的介绍了,有需要的朋友可以参考学习,希望对大家学习python有帮助,想要了解更多python的应用,大家可以继续浏览群英网络其他相关的文章。
文本转载自脚本之家
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
这篇文章主要介绍了Python实现用手机监控远程控制电脑的方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
这篇文章主要为大家详细介绍了python版单链表反转,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
这篇文章主要介绍了python 留一交叉验证的实例代码,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
这篇文章主要为大家介绍了python实现邮件解析的方法,具有一定的参考价值,感兴趣的小伙伴们可以参考一下,希望能够给你带来帮助<BR>
Python的annotate函数用法及应用是什么,有不少朋友对此感兴趣,下面小编给大家整理和分享了相关知识和资料,易于大家学习和理解,有需要的朋友可以借鉴参考,下面我们一起来了解一下吧。
成为群英会员,开启智能安全云计算之旅
立即注册Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008