np.where用法有几种,具体代码是什么
Admin 2022-10-26 群英技术资讯 603 次浏览
这篇文章我们来了解“np.where用法有几种,具体代码是什么”的内容,小编通过实际的案例向大家展示了操作过程,简单易懂,有需要的朋友可以参考了解看看,那么接下来就跟随小编的思路来往下学习吧,希望对大家学习或工作能有帮助。
np.where共两种用法:
第一种np.where(condition, x, y)
,即condition为条件,当满足条件输出为x,不满足条件则输出y.直接上代码:
a = np.arange(10)
//array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
print(np.where(a > 5, 1, -1))
//array([-1, -1, -1, -1, -1, -1, 1, 1, 1, 1])
登录后复制
上面的挺好理解的,但是官网的例子不是太好理解,如下所示:
np.where([[True,False], [True,True]],
[[1,2], [3,4]],
[[9,8], [7,6]])
// 输出 array([[1, 8], [3, 4]])
登录后复制
可以这么理解,第一行的bool值表示条件,它表示是否取值的意思,首先看[True,False],即第一的True值表示第一行取数值第一行的[1, 2]中的1,而不取下面的9,False表示不取第一行[1, 2]中的2,而取第二行[9, 8]中的8.下面同理得[3, 4].
为了方便理解再举一个例子:
a = 10
>>> np.where([[a > 5,a < 5], [a == 10,a == 7]],
[["chosen","not chosen"], ["chosen","not chosen"]],
[["not chosen","chosen"], ["not chosen","chosen"]])
//array([['chosen', 'chosen'], ['chosen', 'chosen']], dtype='<U10')
登录后复制
第一行a>5True,则取第一行的第一个值,a<5取第二行的第二个值,下面也同理.
理解完第一种方法后,再来看np.where第二种方法:
即np.where(condition),只有条件 (condition),没有x和y,则输出满足条件 (即非0) 元素的坐标 (等价于numpy.nonzero)。这里的坐标以tuple的形式给出,通常原数组有多少维,输出的tuple中就包含几个数组,分别对应符合条件元素的各维坐标。
>>> a = np.array([2,4,6,8,10])
>>> np.where(a > 5)
//(array([2, 3, 4]),) 返回索引值
>>> a[np.where(a > 5)]
//array([ 6, 8, 10]) 返回元素值,即a[索引]
登录后复制
举一个代码例子,也是我遇到的:
a = array([[0., 1.],
[0., 1.],
[0., 1.],
[0., 1.],
[0., 1.],
[0., 1.],
[0., 1.],
[0., 1.],
[1., 0.],
[0., 1.],
[0., 1.],
[0., 1.],
[1., 0.],
[1., 0.],
[0., 1.],
[0., 1.],
[1., 0.],
[0., 1.],
[1., 0.],
[0., 1.]])
np.where(a == 1)
//(array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
// 17, 18, 19], dtype=int64),
// array([1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1],
// dtype=int64))
登录后复制
返回的两个array数组分表示第几行的第几个值为1,所以结果中的第一个array数组表示行索引,第二个array数组表示列索引也就是1的碎银索引.
1.np.where(condition,x,y) 当where内有三个参数时,第一个参数表示条件,当条件成立时where方法返回x,当条件不成立时where返回y
2.np.where(condition) 当where内只有一个参数时,那个参数表示条件,当条件成立时,where返回的是每个符合condition条件元素的坐标,返回的是以元组的形式
3.多条件时condition,&表示与,|表示或。如a = np.where((0<a)&(a<5), x, y),当0<a与a<5满足时,返回x的值,当0<a与a<5不满足时,返回y的值。注意x, y必须和a保持相同尺寸。
例如:
import numpy as np
data = np.array([[0, 2, 0],
[3, 1, 2],
[0, 4, 0]])
new_data = np.where((data>= 0) & (data<=2), np.ones_like(data), np.zeros_like(data))
print(new_data)
登录后复制
结果:
[[1 1 1]
[0 1 1]
[1 0 1]]
从中可以看出data中每个元素只要满足data>=0并且data<=2, 满足就返回np.ones_like(data)对应坐标的值,不满足就返回np.zeros_like(data)对应坐标的值。当然x , y可以换成其他的值,只要与条件相同尺寸就可以。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
还记得你在小学时学习如何加减数字吗?现在,你也可以对图像做同样的事情!输入图像可以进行算术运算,例如加法、减法和按位运算(AND、OR、NOT、XOR)。这些操作可以帮助提高输入照片的质量。本文将详解一下这些运算,需要的可以参考一下
Python内置函数-sum()函数。sum() 方法对系列进行求和计算。
python中的str:1、Python中包含字符串,字符串的类型为str。str函数是Python的内置函数,它将参数转换成字符串类型,即人适合阅读的形式;2、主要使用有无参调用和不省略参数。
今天给大家带来的是关于Python的相关知识,文章围绕着python csv的一些基本操作展开,文中有非常详细的介绍及代码示例,需要的朋友可以参考下
对List进行排序,Python提供了两个方法方法1用List的内建函数listsort进行排序listsort(func=None,key=None,reverse=False)Python实对List进行排序,Python提供了两个方法方法1.用List的内建函数list.sort进行排序list.sort(func=None,key=None,reverse=False
成为群英会员,开启智能安全云计算之旅
立即注册Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008