pandas缺失值处理的实现及要点是什么
Admin 2022-09-30 群英技术资讯 757 次浏览
在这篇文章中,我们来学习一下“pandas缺失值处理的实现及要点是什么”的相关知识,下文有详细的讲解,易于大家学习和理解,有需要的朋友可以借鉴参考,下面就请大家跟着小编的思路一起来学习一下吧。有的时候我们可能需要获取一些缺失值的信息,因此我们需要获取这些缺失值在DataFrame中的位置。
假如我们的DataFrame的索引为数值顺序索引,要返回缺失值的位置
import numpy as np import pandas as pd
我们首先构建一个有缺失值的DataFrame
df = pd.DataFrame({'A':[1, 2, 3, np.nan],
'B':[2, np.nan, 4, 6],
'C':[3, 2, np.nan, 3],
'D':[np.nan, 1, np.nan, 2]})
display(df)

首先我们可以查看每列中是否有缺失值
df.isnull().any()

我们发现四个columns均有缺失值,比如我们想知道每列的缺失值的具体位置,以A为例
df.isnull().any()

可以看到返回了A的缺失值位置的索引,这样在定位的时候使用loc函数就可以直接定位到缺失值方便查看了.
如果我们想生成一个字典来存储全部的缺失值位置信息,可以用:
a = df.isnull().any()
a = a.loc[a==True]
columns = a.index.tolist()
mydict = {}#创建一个字典来存储所有的位置
temp = []
for column in columns:
temp = df.loc[df[column].isnull()].index.tolist()
mydict[column] = temp
mydict

#!/usr/bin/evn python
# -*-coding:utf8 -*-
import pandas as pd
data = [[None, None, 90, 80],[57, 43, 89, 65],[78, 50, 67, 78],[None, 78, 90, 73],[67, 45, 78, 76],[77, 88, None, 45],[52, 110, 120, 99],[131, 13, 32, 12]]
index = ['语文', '英语', '数学', '政治', '物理', '化学', '生物', '地理']
column = ['张三', '李四', '王五', '周六']
data = pd.DataFrame(data,index=index,columns=column)
print(data)
print("=========================================================\n")
for columname in data.columns:
if data[columname].count() != len(data):
loc = data[columname][data[columname].isnull().values==True].index.tolist()
print('列名:"{}", 第{}行位置有缺失值'.format(columname,loc))
执行结果
F:\Opensources\python\python.exe D:/pythonStudy/EXCELDB/LagelangriCZ_test.py
张三 李四 王五 周六
语文 NaN NaN 90.0 80
英语 57.0 43.0 89.0 65
数学 78.0 50.0 67.0 78
政治 NaN 78.0 90.0 73
物理 67.0 45.0 78.0 76
化学 77.0 88.0 NaN 45
生物 52.0 110.0 120.0 99
地理 131.0 13.0 32.0 12
=========================================================
列名:"张三", 第['语文', '政治']行位置有缺失值
列名:"李四", 第['语文']行位置有缺失值
列名:"王五", 第['化学']行位置有缺失值
Process finished with exit code 0
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
Python 中使用线程有两种方式:函数或者用类来包装线程对象。函数式:调用 _thread 模块中的 start_new_thread() 函数来产生新线程。
这篇文章主要介绍了python3 解决requests出错重试的问题,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
这篇文章主要介绍了Python连接数据库使用matplotlib画柱形图,文章通过实例展开对主题的相关介绍。具有一定的知识参考价值性,感兴趣的小伙伴可以参考一下
这篇文章介绍了Python中的Selenium异常处理,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
一步步实现有趣的飞机塔防游戏,有兴趣了解一下吗?文中有非常详细的代码示例,对喜欢玩游戏的小伙伴们很有帮助哦,需要的朋友可以参考下
成为群英会员,开启智能安全云计算之旅
立即注册Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008