pytorch实现多gpu训练怎样做?一文带你看懂
Admin 2021-08-19 群英技术资讯 1818 次浏览
这篇文章主要介绍pytorch实现多gpu训练的内容,对新手学习和了解pytorch具有一定参考价值,感兴趣的朋友就继续往下看吧,希望大家阅读完这篇文章能有所收获,接下来小编带着大家一起了解看看。
net = AlexNet() net.cuda()#转移到CUDA上
criterion = nn.CrossEntropyLoss() criterion = criterion.cuda()
这一步不做也可以,因为loss是根据out、label算出来的
loss = criterion(out, label)
只要out、label在CUDA上,loss自然也在CUDA上了,但是发现不转移到CUDA上准确率竟然降低了1%
这里要解释一下数据集使用方法
#download the dataset
train_set = CIFAR10("./data_cifar10", train=True, transform=data_tf, download=True)
train_data = torch.utils.data.DataLoader(train_set, batch_size=64, shuffle=True)
dataset是把所有的input,label都制作成了一个大的多维数组
dataloader是在这个大的多维数组里采样制作成batch,用这些batch来训练
for im, label in train_data:
i = i + 1
im = im.cuda()#把数据迁移到CUDA上
im = Variable(im)#把数据放到Variable里
label = label.cuda()
label =Variable(label)
out = net(im)#the output should have the size of (N,10)
遍历batch的时候,首先要把拿出来的Image、label都转移到CUDA上,这样接下来的计算都是在CUDA上了
开始的时候只在转成Variable以后才迁移到CUDA上,这样在网络传播过程中就数据不是在CUDA上了,所以一直报错
查看有哪些可用的gpu
nvidia -smi
实时查看gpu信息1代表每1秒刷新一次
watch -n -1 nvidia -smi
指定使用的gpu
import os # 使用第一张与第三张GPU卡 os.environ["CUDA_VISIBLE_DEVICES"] = "0,3"
以上就是关于pytorch实现多gpu训练的相关介绍,希望对大家学习和理解pytorch gpu训练有帮助,想要了解更多pytorch实现多gpu训练的内容,大家可以关注其他相关文章。
文本转载自脚本之家
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
这篇文章给大家分享的是有关python如何批量移动文件的内容,小编觉得是比较实用的,下面就通过一个实例给大家介绍一下,感兴趣的朋友就继续往下看吧。
这篇文章主要给大家介绍了关于python学习之panda数据分析核心支持库的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
这篇文章主要介绍了Python 读取.txt,.md等文本文件的操作,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
这篇文章主要介绍了Python写一个简单上课点名系统,文章围绕Python得性概念资料写一个简的得上课点名系统,并附上详细的代码即过程总结,需要的朋友可以参考一下,希望对你有所帮助
先说1双引号与3个双引号的区别,双引号所表示的字符串通常要写成一行如:s1 = "hello,world"如果要写成多行,那么就要使用 (“连行符”
成为群英会员,开启智能安全云计算之旅
立即注册关注或联系群英网络
7x24小时售前:400-678-4567
7x24小时售后:0668-2555666
24小时QQ客服
群英微信公众号
CNNIC域名投诉举报处理平台
服务电话:010-58813000
服务邮箱:service@cnnic.cn
投诉与建议:0668-2555555
Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 ICP核准(ICP备案)粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008