np.random模块常用方法及作用是什么呢
Admin 2022-09-20 群英技术资讯 1295 次浏览
很多朋友都对“np.random模块常用方法及作用是什么呢”的内容比较感兴趣,对此小编整理了相关的知识分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获,那么感兴趣的朋友就继续往下看吧!| 名称 | 作用 |
|---|---|
| numpy.random.rand(d0, d1, …, dn) | 生成一个[d0, d1, …, dn]维的numpy数组,数组的元素取自[0, 1)上的均分布,若没有参数输入,则生成一个[0, 1)的数。 |
| numpy.random.randn(d0, d1, …, dn) | 生成一个[d0, d1, …, dn]维的numpy数组,具有标准正态分布。 |
| numpy.random.randint(low, high=None, size=None, dtype=‘I’) | 生成整数,取值范围为[low, high),若没有输入参数high,则取值区间为[0, low)。 |
| numpy.random.uniform(low=0.0, high=1.0, size=None) | 生成符合均分布的浮点数,取值范围为[low, high),默认取值范围为[0, 1.0)。 |
| numpy.random.normal(loc=0.0, scale=1.0, size=None) | 按照正态分布生成均值为loc,标准差为scale的,形状为size的浮点数。 |
| numpy.random.random(size=None) | 生成[0.0, 1.0)之间的浮点数。 |
| numpy.random.choice(a, size=None, replace=True, p=None) | 从a(数组)中选取size(维度)大小的随机数,replace=True表示可重复抽取,p是a中每个数出现的概率。若a是整数,则a代表的数组是arange(a)。 |
生成一个[d0, d1, …, dn]维的numpy数组,数组的元素取自[0, 1)上的均分布,若没有参数输入,则生成一个[0, 1)的数。
import numpy as np v1 = np.random.rand() v2 = np.random.rand(3,4) print(v1) print(v2)
输出结果为:
0.618411110932038
[[0.35134062 0.55609186 0.4173297 0.85541691]
[0.35144304 0.31204156 0.60196109 0.390464 ]
[0.19186067 0.94570486 0.8637441 0.07028114]]
生成一个[d0, d1, …, dn]维的numpy数组,具有标准正态分布。
import numpy as np v1 = np.random.randn() v2 = np.random.randn(3,4) print(v1) print(v2)
输出结果为:
0.47263651836701953
[[-0.23431214 0.97197099 0.52845269 -0.45246824]
[-1.1266395 -1.60040653 -2.64602615 -0.19457032]
[-0.520287 -1.0799122 0.08441667 0.34980224]]
生成整数,取值范围为[low, high),若没有输入参数high,则取值区间为[0, low)。
import numpy as np v1 = np.random.randint(5) v2 = np.random.randint(1,high = 5) v3 = np.random.randint(1,high = 5,size = [3,4]) print(v1) print(v2) print(v3)
输出结果为:
2
3
[[1 1 3 1]
[2 2 3 2]
[3 4 2 1]]
生成符合均分布的浮点数,取值范围为[low, high),默认取值范围为[0, 1.0)。
import numpy as np v1 = np.random.uniform() v2 = np.random.uniform(low = 0,high = 5) v3 = np.random.uniform(low = 0,high = 5,size = [3,4]) print(v1) print(v2) print(v3)
输出结果为:
0.6925621763952164
3.0483936610544218
[[1.34959297 4.84117424 0.41277118 4.81392216]
[2.91266734 0.87922181 3.39729422 3.34340092]
[0.45158364 3.8129479 0.54246798 2.57192192]]
按照正态分布生成均值为loc,标准差为scale的,形状为size的浮点数。
import numpy as np v1 = np.random.normal() v2 = np.random.normal(loc = 0,scale = 5) v3 = np.random.normal(loc = 0,scale = 5,size = [3,4]) print(v1) print(v2) print(v3)
输出结果为:
0.7559391954091367
-3.359831771004067
[[ 3.90821047 6.37757533 6.3813528 0.86219281]
[ -3.61201084 4.05948053 -3.91172941 11.29050165]
[ -8.60318633 -10.07090496 -4.86557867 7.98536182]]
生成[0.0, 1.0)之间的浮点数。
import numpy as np v1 = np.random.random() v2 = np.random.random(size = [3,4]) print(v1) print(v2)
输出结果为:
0.5930924941107145
[[0.41002067 0.28097163 0.8908558 0.16951515]
[0.59730596 0.57475303 0.84174255 0.59633522]
[0.63508879 0.44138737 0.6223043 0.61540997]]
从a(数组)中选取size(维度)大小的随机数,replace=True表示可重复抽取,p是a中每个数出现的概率。
若a是整数,则a代表的数组是arange(a)。
import numpy as np
v1 = np.random.choice(5)
v2 = np.random.choice(5,size = 5)
v3 = np.random.choice([1,2,3,4,5],size = 5)
v4 = np.random.choice([1,2,3,4,5],size = 5,p = [1,0,0,0,0])
v5 = np.random.choice([1,2,3,4,5],size = 5,replace = False)
print("v1:",v1)
print("v2:",v2)
print("v3:",v3)
print("v4:",v4)
print("v5:",v5)
输出结果为:
v1: 1
v2: [0 0 4 0 4]
v3: [3 2 3 1 1]
v4: [1 1 1 1 1]
v5: [4 2 3 5 1]
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
这篇文章主要为大家介绍了Python办公自动化处理的10大场景应用示例详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
python之基数排序的实现。算法思想,插入\交换\选择\归并类的排序算法都需要通过比较关键字的大小来完成排序.因为存在两两比较所以这一类的排序方法在最好情况下能达到的复杂度是O(n*logn),如快速排序...
测试对象的定位和操作是我们利用 selenium 编写自动化脚本和 webdriver 的核心内容。本文我们就来学习一下常用的元素定位方法有哪些吧
#用正则简单过滤html的<>标签importrestr="<img/><a>srcd</a>hello</br><br/>"str=re.sub(r'</?\w+[^>]*>','',str)print(str)importretest='&am
Splinter是一个使用Python测试Web应用程序的开源工具,可以自动化浏览器操作,使用Splinter可以使用pyhton脚本来实现,具体安装及操作方法跟随小编一起看看吧
成为群英会员,开启智能安全云计算之旅
立即注册关注或联系群英网络
7x24小时售前:400-678-4567
7x24小时售后:0668-2555666
24小时QQ客服
群英微信公众号
CNNIC域名投诉举报处理平台
服务电话:010-58813000
服务邮箱:service@cnnic.cn
投诉与建议:0668-2555555
Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008