LSTM是什么,在Keras中如何实现LSTM
Admin 2022-09-17 群英技术资讯 532 次浏览
我们可以看出,在n时刻,LSTM的输入有三个:
LSTM的输出有两个:
LSTM用两个门来控制单元状态cn的内容:
LSTM用一个门来控制当前输出值hn的内容:
输出门(output gate),它利用当前时刻单元状态cn对hn的输出进行控制。
遗忘门这里需要结合ht-1和Xt来决定上一时刻的单元状态cn-1有多少保留到当前时刻;
由图我们可以得到,我们在这一环节需要计一个参数ft。
输入门这里需要结合ht-1和Xt来决定当前时刻网络的输入c’n有多少保存到单元状态cn中。
由图我们可以得到,我们在这一环节需要计算两个参数,分别是it。
和C’t
里面需要训练的参数分别是Wi、bi、WC和bC。
在定义LSTM的时候我们会使用到一个参数叫做units,其实就是神经元的个数,也就是LSTM的输出——ht的维度。
所以:
输出门利用当前时刻单元状态cn对hn的输出进行控制;
由图我们可以得到,我们在这一环节需要计一个参数ot。
里面需要训练的参数分别是Wo和bo。在定义LSTM的时候我们会使用到一个参数叫做units,其实就是神经元的个数,也就是LSTM的输出——ht的维度。所以:
所以所有的门总参数量为:
LSTM一般需要输入两个参数。
一个是unit、一个是input_shape。
LSTM(CELL_SIZE, input_shape = (TIME_STEPS,INPUT_SIZE))
unit用于指定神经元的数量。
input_shape用于指定输入的shape,分别指定TIME_STEPS和INPUT_SIZE。
import numpy as np from keras.models import Sequential from keras.layers import Input,Activation,Dense from keras.models import Model from keras.datasets import mnist from keras.layers.recurrent import LSTM from keras.utils import np_utils from keras.optimizers import Adam TIME_STEPS = 28 INPUT_SIZE = 28 BATCH_SIZE = 50 index_start = 0 OUTPUT_SIZE = 10 CELL_SIZE = 75 LR = 1e-3 (X_train,Y_train),(X_test,Y_test) = mnist.load_data() X_train = X_train.reshape(-1,28,28)/255 X_test = X_test.reshape(-1,28,28)/255 Y_train = np_utils.to_categorical(Y_train,num_classes= 10) Y_test = np_utils.to_categorical(Y_test,num_classes= 10) inputs = Input(shape=[TIME_STEPS,INPUT_SIZE]) x = LSTM(CELL_SIZE, input_shape = (TIME_STEPS,INPUT_SIZE))(inputs) x = Dense(OUTPUT_SIZE)(x) x = Activation("softmax")(x) model = Model(inputs,x) adam = Adam(LR) model.summary() model.compile(loss = 'categorical_crossentropy',optimizer = adam,metrics = ['accuracy']) for i in range(50000): X_batch = X_train[index_start:index_start + BATCH_SIZE,:,:] Y_batch = Y_train[index_start:index_start + BATCH_SIZE,:] index_start += BATCH_SIZE cost = model.train_on_batch(X_batch,Y_batch) if index_start >= X_train.shape[0]: index_start = 0 if i%100 == 0: cost,accuracy = model.evaluate(X_test,Y_test,batch_size=50) print("accuracy:",accuracy)
实现效果:
10000/10000 [==============================] - 3s 340us/step accuracy: 0.14040000014007092 10000/10000 [==============================] - 3s 310us/step accuracy: 0.6507000041007995 10000/10000 [==============================] - 3s 320us/step accuracy: 0.7740999992191792 10000/10000 [==============================] - 3s 305us/step accuracy: 0.8516999959945679 10000/10000 [==============================] - 3s 322us/step accuracy: 0.8669999945163727 10000/10000 [==============================] - 3s 324us/step accuracy: 0.889699995815754 10000/10000 [==============================] - 3s 307us/step
关于“LSTM是什么,在Keras中如何实现LSTM”的内容今天就到这,感谢各位的阅读,大家可以动手实际看看,对大家加深理解更有帮助哦。如果想了解更多相关内容的文章,关注我们,群英网络小编每天都会为大家更新不同的知识。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
Python的pprint模块中使用的格式化可以按照一种格式正确的显示数据, 这种格式即可被解析器解析, 又很易读 输出保存在一个单行内, 但如
torchtext在文本数据预处理方面特别强大,但我们要知道ta能做什么、不能做什么,并如何将我们的需求用torchtext实现。虽然torchtext是为pytorch而设计的,但是也可以与keras、tensorflow等结合使用。
这篇文章主要介绍了在PyCharm搭建OpenCV-python的环境的详细过程,本文通过图文并茂的形式给大家介绍搭建步骤,对PyCharm搭建OpenCV-python环境相关知识感兴趣的朋友一起看看吧
详解Python列表的常用操作及应用是怎样的,下文的讲解详细,步骤过程清晰,对大家进一步学习和理解相关知识有一定的帮助。有这方面学习需要的朋友就继续往下看吧!
使用django ORM可以创建多表关系,并且也支持多张表之间的操作,以创建表关系和查询两部分说明django ORM的多表操作,本文就详细的介绍一下,感兴趣的可以了解一下
成为群英会员,开启智能安全云计算之旅
立即注册Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008