python神经网络FPN及其原理如何理解
Admin 2022-09-17 群英技术资讯 584 次浏览
很多文章里面写道特征金字塔这个结构,其实这个结构Very-Easy
目标检测任务和语义分割任务里面常常需要检测小目标,但是小目标比较小呀,可能在原图里面只有几十个像素点。就像这个样子。
我不检测这个猫,我就检测这一片片落叶,是不是每个落叶所占的像素点特别少呢。
答案肯定是的。
最关键的问题就是,像素点少会对目标检测有什么影响!
我这里没有严密的数学推导,就从思想上来说,对于深度卷积网络,从一个特征层卷积到另一个特征层,无论步长是1还是2还是更多,卷积核都要遍布整个图片进行卷积,大的目标所占的像素点比小目多,所以大的目标被经过卷积核的次数远比小的目标多,所以在下一个特征层里,会更多的反应大目标的特点。
特别是在步长大于等于2的情况下,大目标的特点更容易得到保留,小目标的特征点容易被跳过。
因此,经过很多层的卷积之后,小目标的特点会越来越少,越小越小。
特征金字塔所做的其实就是下面这幅图。
这个结构与语义分割中的unet结构非常像,其对特征点进行不断的下采样后,拥有了一堆具有高语义内容的特征层,然后重新进行上采样,使得特征层的长宽重新变大,用大size的feature map去检测小目标,当然不可以简单只上采样,因为这样上采样的结果对小目标的特征与信息也不明确了,因此我们可以将下采样中,与上采样中长宽相同的特征层进行堆叠,这样可以保证小目标的特征与信息。
这是yolo3的网络结构,利用DarkNet53来进行特征提取,总共利用下采样进行五次长宽的收缩。
利用上采样进行三次长宽的扩张,在每次扩张之后,再与对应的下采样特征层进行合并堆叠,最后获得目标检测结果!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
有时候我们需要用python调用matlab,但是不少朋友在python调用matlab事,会遇到一些问题,因此这篇文章就分享一下如何解决python调用matlab的几个常见问题。
运用python的数学函数,先导入math模块,再定义isPrime()方法即可;使用for进行单行程序扫描素数即可;运用python的itertools模块判断即可;使用if...while语句来判断即可。
这篇文章主要介绍了Python中模块(Module)和包(Package)的区别详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
Django是基于MTV模式的框架,需要配合url控制器(路径分发)使用,本文重点给大家介绍Django MTV模式详解,需要的朋友参考下吧
这篇文章主要为大家详细介绍了python tkinter实现定时关机,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
成为群英会员,开启智能安全云计算之旅
立即注册Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008