MobileNetV2模型的定义及其实现代码是什么呢
Admin 2022-09-17 群英技术资讯 688 次浏览
这篇文章给大家分享的是“MobileNetV2模型的定义及其实现代码是什么呢”,对大家学习和理解有一定的参考价值和帮助,有这方面学习需要的朋友,接下来就跟随小编一起学习一下吧。MobileNet它哥MobileNetV2也是很不错的呢
MobileNet模型是Google针对手机等嵌入式设备提出的一种轻量级的深层神经网络,其使用的核心思想便是depthwise separable convolution。
MobileNetV2是MobileNet的升级版,它具有两个特征点:
1、Inverted residuals,在ResNet50里我们认识到一个结构,bottleneck design结构,在3x3网络结构前利用1x1卷积降维,在3x3网络结构后,利用1x1卷积升维,相比直接使用3x3网络卷积效果更好,参数更少,先进行压缩,再进行扩张。而在MobileNetV2网络部分,其采用Inverted residuals结构,在3x3网络结构前利用1x1卷积升维,在3x3网络结构后,利用1x1卷积降维,先进行扩张,再进行压缩。
2、Linear bottlenecks,为了避免Relu对特征的破坏,在在3x3网络结构前利用1x1卷积升维,在3x3网络结构后,再利用1x1卷积降维后,不再进行Relu6层,直接进行残差网络的加法。

整体网络结构如下:(其中bottleneck进行的操作就是上述的创新操作)

#-------------------------------------------------------------#
# MobileNetV2的网络部分
#-------------------------------------------------------------#
import math
import numpy as np
import tensorflow as tf
from tensorflow.keras import backend
from keras import backend as K
from keras.preprocessing import image
from keras.models import Model
from keras.layers.normalization import BatchNormalization
from keras.layers import Conv2D, Add, ZeroPadding2D, GlobalAveragePooling2D, Dropout, Dense
from keras.layers import MaxPooling2D,Activation,DepthwiseConv2D,Input,GlobalMaxPooling2D
from keras.applications import imagenet_utils
from keras.applications.imagenet_utils import decode_predictions
from keras.utils.data_utils import get_file
# TODO Change path to v1.1
BASE_WEIGHT_PATH = ('https://github.com/JonathanCMitchell/mobilenet_v2_keras/'
'releases/download/v1.1/')
# relu6!
def relu6(x):
return K.relu(x, max_value=6)
# 用于计算padding的大小
def correct_pad(inputs, kernel_size):
img_dim = 1
input_size = backend.int_shape(inputs)[img_dim:(img_dim + 2)]
if isinstance(kernel_size, int):
kernel_size = (kernel_size, kernel_size)
if input_size[0] is None:
adjust = (1, 1)
else:
adjust = (1 - input_size[0] % 2, 1 - input_size[1] % 2)
correct = (kernel_size[0] // 2, kernel_size[1] // 2)
return ((correct[0] - adjust[0], correct[0]),
(correct[1] - adjust[1], correct[1]))
# 使其结果可以被8整除,因为使用到了膨胀系数α
def _make_divisible(v, divisor, min_value=None):
if min_value is None:
min_value = divisor
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
if new_v < 0.9 * v:
new_v += divisor
return new_v
def MobileNetV2(input_shape=[224,224,3],
alpha=1.0,
include_top=True,
weights='imagenet',
classes=1000):
rows = input_shape[0]
img_input = Input(shape=input_shape)
# stem部分
# 224,224,3 -> 112,112,32
first_block_filters = _make_divisible(32 * alpha, 8)
x = ZeroPadding2D(padding=correct_pad(img_input, 3),
name='Conv1_pad')(img_input)
x = Conv2D(first_block_filters,
kernel_size=3,
strides=(2, 2),
padding='valid',
use_bias=False,
name='Conv1')(x)
x = BatchNormalization(epsilon=1e-3,
momentum=0.999,
name='bn_Conv1')(x)
x = Activation(relu6, name='Conv1_relu')(x)
# 112,112,32 -> 112,112,16
x = _inverted_res_block(x, filters=16, alpha=alpha, stride=1,
expansion=1, block_id=0)
# 112,112,16 -> 56,56,24
x = _inverted_res_block(x, filters=24, alpha=alpha, stride=2,
expansion=6, block_id=1)
x = _inverted_res_block(x, filters=24, alpha=alpha, stride=1,
expansion=6, block_id=2)
# 56,56,24 -> 28,28,32
x = _inverted_res_block(x, filters=32, alpha=alpha, stride=2,
expansion=6, block_id=3)
x = _inverted_res_block(x, filters=32, alpha=alpha, stride=1,
expansion=6, block_id=4)
x = _inverted_res_block(x, filters=32, alpha=alpha, stride=1,
expansion=6, block_id=5)
# 28,28,32 -> 14,14,64
x = _inverted_res_block(x, filters=64, alpha=alpha, stride=2,
expansion=6, block_id=6)
x = _inverted_res_block(x, filters=64, alpha=alpha, stride=1,
expansion=6, block_id=7)
x = _inverted_res_block(x, filters=64, alpha=alpha, stride=1,
expansion=6, block_id=8)
x = _inverted_res_block(x, filters=64, alpha=alpha, stride=1,
expansion=6, block_id=9)
# 14,14,64 -> 14,14,96
x = _inverted_res_block(x, filters=96, alpha=alpha, stride=1,
expansion=6, block_id=10)
x = _inverted_res_block(x, filters=96, alpha=alpha, stride=1,
expansion=6, block_id=11)
x = _inverted_res_block(x, filters=96, alpha=alpha, stride=1,
expansion=6, block_id=12)
# 14,14,96 -> 7,7,160
x = _inverted_res_block(x, filters=160, alpha=alpha, stride=2,
expansion=6, block_id=13)
x = _inverted_res_block(x, filters=160, alpha=alpha, stride=1,
expansion=6, block_id=14)
x = _inverted_res_block(x, filters=160, alpha=alpha, stride=1,
expansion=6, block_id=15)
# 7,7,160 -> 7,7,320
x = _inverted_res_block(x, filters=320, alpha=alpha, stride=1,
expansion=6, block_id=16)
if alpha > 1.0:
last_block_filters = _make_divisible(1280 * alpha, 8)
else:
last_block_filters = 1280
# 7,7,320 -> 7,7,1280
x = Conv2D(last_block_filters,
kernel_size=1,
use_bias=False,
name='Conv_1')(x)
x = BatchNormalization(epsilon=1e-3,
momentum=0.999,
name='Conv_1_bn')(x)
x = Activation(relu6, name='out_relu')(x)
x = GlobalAveragePooling2D()(x)
x = Dense(classes, activation='softmax',
use_bias=True, name='Logits')(x)
inputs = img_input
model = Model(inputs, x, name='mobilenetv2_%0.2f_%s' % (alpha, rows))
# Load weights.
if weights == 'imagenet':
if include_top:
model_name = ('mobilenet_v2_weights_tf_dim_ordering_tf_kernels_' +
str(alpha) + '_' + str(rows) + '.h5')
weight_path = BASE_WEIGHT_PATH + model_name
weights_path = get_file(
model_name, weight_path, cache_subdir='models')
else:
model_name = ('mobilenet_v2_weights_tf_dim_ordering_tf_kernels_' +
str(alpha) + '_' + str(rows) + '_no_top' + '.h5')
weight_path = BASE_WEIGHT_PATH + model_name
weights_path = get_file(
model_name, weight_path, cache_subdir='models')
model.load_weights(weights_path)
elif weights is not None:
model.load_weights(weights)
return model
def _inverted_res_block(inputs, expansion, stride, alpha, filters, block_id):
in_channels = backend.int_shape(inputs)[-1]
pointwise_conv_filters = int(filters * alpha)
pointwise_filters = _make_divisible(pointwise_conv_filters, 8)
x = inputs
prefix = 'block_{}_'.format(block_id)
# part1 数据扩张
if block_id:
# Expand
x = Conv2D(expansion * in_channels,
kernel_size=1,
padding='same',
use_bias=False,
activation=None,
name=prefix + 'expand')(x)
x = BatchNormalization(epsilon=1e-3,
momentum=0.999,
name=prefix + 'expand_BN')(x)
x = Activation(relu6, name=prefix + 'expand_relu')(x)
else:
prefix = 'expanded_conv_'
if stride == 2:
x = ZeroPadding2D(padding=correct_pad(x, 3),
name=prefix + 'pad')(x)
# part2 可分离卷积
x = DepthwiseConv2D(kernel_size=3,
strides=stride,
activation=None,
use_bias=False,
padding='same' if stride == 1 else 'valid',
name=prefix + 'depthwise')(x)
x = BatchNormalization(epsilon=1e-3,
momentum=0.999,
name=prefix + 'depthwise_BN')(x)
x = Activation(relu6, name=prefix + 'depthwise_relu')(x)
# part3压缩特征,而且不使用relu函数,保证特征不被破坏
x = Conv2D(pointwise_filters,
kernel_size=1,
padding='same',
use_bias=False,
activation=None,
name=prefix + 'project')(x)
x = BatchNormalization(epsilon=1e-3,
momentum=0.999,
name=prefix + 'project_BN')(x)
if in_channels == pointwise_filters and stride == 1:
return Add(name=prefix + 'add')([inputs, x])
return x
建立网络后,可以用以下的代码进行预测。
def preprocess_input(x):
x /= 255.
x -= 0.5
x *= 2.
return x
if __name__ == '__main__':
model = MobileNetV2(input_shape=(224, 224, 3))
model.summary()
img_path = 'elephant.jpg'
img = image.load_img(img_path, target_size=(224, 224))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)
print('Input image shape:', x.shape)
preds = model.predict(x)
print(np.argmax(preds))
print('Predicted:', decode_predictions(preds, 1))
预测所需的已经训练好的MobileNetV2模型会在运行时自动下载,下载后的模型位于C:\Users\Administrator.keras\models文件夹内。
可以修改MobileNetV2内不同的alpha值实现不同depth的MobileNetV2模型。可选的alpha值有:
| Top-1 | Top-5 | 10-5 | Size | Stem | |
|---|---|---|---|---|---|
| MobileNetV2(alpha=0.35) | 39.914 | 17.568 | 15.422 | 1.7M | 0.4M |
| MobileNetV2(alpha=0.50) | 34.806 | 13.938 | 11.976 | 2.0M | 0.7M |
| MobileNetV2(alpha=0.75) | 30.468 | 10.824 | 9.188 | 2.7M | 1.4M |
| MobileNetV2(alpha=1.0) | 28.664 | 9.858 | 8.322 | 3.5M | 2.3M |
| MobileNetV2(alpha=1.3) | 25.320 | 7.878 | 6.728 | 5.4M | 3.8M |
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
同时运行多个线程类似于同时运行多个不同的程序,但具有以下好处 :进程内的多个线程与主线程共享相同的数据空间,因此可以比单独的进程更容易地共享信息或彼此进行通信。线程有时也被称为轻量级进程,它们不需要太多的内存开销; 它们比进程便宜。
python open()方法用于打开一个文件,并返回文件对象,在对文件处理的过程中都需要用到这个函数,如果文件无法打开,会抛出OSError。
提取中英文是我们在做数据处理时候经常使用的,最高效的做法就是通过正则判断了,下面是我写的笔记,希望对你有用
@用做函数的修饰符,可以在模块或者类的定义层内对函数进行修饰,下面这篇文章主要给大家介绍了关于python中 @ 的含义以及基本使用的相关资料,需要的朋友可以参考下
经常出现在网页上的基于JavaScript实现的弹出框有三种,分别是 alert、confirm、prompt 。本文主要是学习如何利用selenium处理这三种弹出框,感兴趣的可以了解一下
成为群英会员,开启智能安全云计算之旅
立即注册Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008