keras模型保存与读取相关函数有哪些呢?
Admin 2022-09-16 群英技术资讯 750 次浏览
这篇文章给大家介绍了“keras模型保存与读取相关函数有哪些呢?”的相关知识,讲解详细,步骤过程清晰,有一定的借鉴学习价值,因此分享给大家做个参考,感兴趣的朋友接下来一起跟随小编看看吧。model.save用于保存模型,在保存模型前,首先要利用pip install安装h5py的模块,这个模块在Keras的模型保存与读取中常常被使用,用于定义保存格式。
pip install h5py
完成安装后,可以通过如下函数保存模型。
model.save("./model.hdf5")
其中,model是已经训练完成的模型,save函数传入的参数就是保存后的位置+名字。
load_model用于载入模型。
具体使用方式如下:
model = load_model("./model.hdf5")
其中,load_model函数传入的参数就是已经完成保存的模型的位置+名字。./表示保存在当前目录。
这是一个简单的手写体识别例子,在之前也讲解过如何构建
python神经网络学习使用Keras进行简单分类,在最后我添加上了模型的保存与读取函数。
import numpy as np
from keras.models import Sequential,load_model,save_model
from keras.layers import Dense,Activation ## 全连接层
from keras.datasets import mnist
from keras.utils import np_utils
from keras.optimizers import RMSprop
# 获取训练集
(X_train,Y_train),(X_test,Y_test) = mnist.load_data()
# 首先进行标准化
X_train = X_train.reshape(X_train.shape[0],-1)/255
X_test = X_test.reshape(X_test.shape[0],-1)/255
# 计算categorical_crossentropy需要对分类结果进行categorical
# 即需要将标签转化为形如(nb_samples, nb_classes)的二值序列
Y_train = np_utils.to_categorical(Y_train,num_classes= 10)
Y_test = np_utils.to_categorical(Y_test,num_classes= 10)
# 构建模型
model = Sequential([
Dense(32,input_dim = 784),
Activation("relu"),
Dense(10),
Activation("softmax")
]
)
rmsprop = RMSprop(lr = 0.001,rho = 0.9,epsilon = 1e-08,decay = 0)
## compile
model.compile(loss = 'categorical_crossentropy',optimizer = rmsprop,metrics=['accuracy'])
print("\ntraining")
cost = model.fit(X_train,Y_train,nb_epoch = 2,batch_size = 100)
print("\nTest")
# 测试
cost,accuracy = model.evaluate(X_test,Y_test)
print("accuracy:",accuracy)
# 保存模型
model.save("./model.hdf5")
# 删除现有模型
del model
print("model had been del")
# 再次载入模型
model = load_model("./model.hdf5")
# 预测
cost,accuracy = model.evaluate(X_test,Y_test)
print("accuracy:",accuracy)
实验结果为:
Epoch 1/2 60000/60000 [==============================] - 6s 104us/step - loss: 0.4217 - acc: 0.8888 Epoch 2/2 60000/60000 [==============================] - 6s 99us/step - loss: 0.2240 - acc: 0.9366 Test 10000/10000 [==============================] - 1s 149us/step accuracy: 0.9419 model had been del 10000/10000 [==============================] - 1s 117us/step accuracy: 0.9419
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
大家好,本篇文章主要讲的是用python将word文档合并实例代码,感兴趣的同学赶快老看一看吧,对你有帮助的话记得收藏一下,方便下次浏览
concat与merge函数的作用和用法是什么,一些朋友可能会遇到这方面的问题,对此在下文小编向大家来讲解一下,内容详细,易于理解,希望大家阅读完这篇能有收获哦,有需要的朋友就往下看吧!
这篇文章给大家分享的是有关Python中Numpy怎么用的内容。Numpy是Python学习的基础内容,小编觉得挺实用的,因此分享给大家做个参考,接下来一起跟随小编看看吧。
本文详细讲解了Python的基本语法,文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
这篇文章主要介绍了python性能检测工具函数运行内存及运行时间,python虽然是一门慢语言,但是也有着比较多的性能检测工具来帮助我们优化程序的运行效率,下文小编给大家分享五个性能检测工具,需要的朋友可以参考一下
成为群英会员,开启智能安全云计算之旅
立即注册Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008