Keras中分类的重要函数有哪些,怎样实现分类
Admin 2022-09-16 群英技术资讯 835 次浏览
这篇文章主要介绍“Keras中分类的重要函数有哪些,怎样实现分类”,有一些人在Keras中分类的重要函数有哪些,怎样实现分类的问题上存在疑惑,接下来小编就给大家来介绍一下相关的内容,希望对大家解答有帮助,有这个方面学习需要的朋友就继续往下看吧。上一篇讲了如何构建回归算法,这一次将怎么进行简单分类。
np_utils.to_categorical用于将标签转化为形如(nb_samples, nb_classes)的二值序列。
假设num_classes = 10。
如将[1,2,3,……4]转化成:
[[0,1,0,0,0,0,0,0]
[0,0,1,0,0,0,0,0]
[0,0,0,1,0,0,0,0]
……
[0,0,0,0,1,0,0,0]]
这样的形态。
如将Y_train转化为二值序列,可以用如下方式:
Y_train = np_utils.to_categorical(Y_train,num_classes= 10)
Activation是激活函数,一般在每一层的输出使用。
当我们使用Sequential模型构建函数的时候,只需要在每一层Dense后面添加Activation就可以了。
Sequential函数也支持直接在参数中完成所有层的构建,使用方法如下。
model = Sequential([
Dense(32,input_dim = 784),
Activation("relu"),
Dense(10),
Activation("softmax")
]
)
其中两次Activation分别使用了relu函数和softmax函数。
在model.compile中添加metrics=[‘accuracy’]表示需要计算分类精确度,具体使用方式如下:
model.compile( loss = 'categorical_crossentropy', optimizer = rmsprop, metrics=['accuracy'] )
这是一个简单的仅含有一个隐含层的神经网络,用于完成手写体识别。在本例中,使用的优化器是RMSprop,具体可以使用的优化器可以参照Keras中文文档。
import numpy as np
from keras.models import Sequential
from keras.layers import Dense,Activation ## 全连接层
from keras.datasets import mnist
from keras.utils import np_utils
from keras.optimizers import RMSprop
# 获取训练集
(X_train,Y_train),(X_test,Y_test) = mnist.load_data()
# 首先进行标准化
X_train = X_train.reshape(X_train.shape[0],-1)/255
X_test = X_test.reshape(X_test.shape[0],-1)/255
# 计算categorical_crossentropy需要对分类结果进行categorical
# 即需要将标签转化为形如(nb_samples, nb_classes)的二值序列
Y_train = np_utils.to_categorical(Y_train,num_classes= 10)
Y_test = np_utils.to_categorical(Y_test,num_classes= 10)
# 构建模型
model = Sequential([
Dense(32,input_dim = 784),
Activation("relu"),
Dense(10),
Activation("softmax")
]
)
rmsprop = RMSprop(lr = 0.001,rho = 0.9,epsilon = 1e-08,decay = 0)
## compile
model.compile(loss = 'categorical_crossentropy',optimizer = rmsprop,metrics=['accuracy'])
print("\ntraining")
cost = model.fit(X_train,Y_train,nb_epoch = 2,batch_size = 32)
print("\nTest")
cost,accuracy = model.evaluate(X_test,Y_test)
## W,b = model.layers[0].get_weights()
print("accuracy:",accuracy)
实验结果为:
Epoch 1/2 60000/60000 [==============================] - 12s 202us/step - loss: 0.3512 - acc: 0.9022 Epoch 2/2 60000/60000 [==============================] - 11s 183us/step - loss: 0.2037 - acc: 0.9419 Test 10000/10000 [==============================] - 1s 108us/step accuracy: 0.9464
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
Matplotlib的可以把很多张图画到一个显示界面,这就设计到面板切分成一个一个子图,下面这篇文章主要给大家介绍了关于调整Matplotlib子图大小的相关资料,文中通过实例代码介绍的非常详细,需要的朋友可以参考下
这篇文章主要介绍了python之NAN和INF值处理方式,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
这篇文章是一篇入门篇,主要给大家介绍了关于python开发中的Docker安装部署,图文方式展示了安装的过程步骤,有需要的朋友可以参考下
这篇文章主要为大家介绍了Python中字典有关的常见函数的使用方法,以及字典遍历的方法。文中通过示例代码为我们进行了详细介绍,对学习Python字典有一定帮助,需要的可以参考一下
这篇文章介绍了python的单元测试框架pytest,文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
成为群英会员,开启智能安全云计算之旅
立即注册关注或联系群英网络
7x24小时售前:400-678-4567
7x24小时售后:0668-2555666
24小时QQ客服
群英微信公众号
CNNIC域名投诉举报处理平台
服务电话:010-58813000
服务邮箱:service@cnnic.cn
投诉与建议:0668-2555555
Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008