python目标检测IOU的特点是什么,如何计算IOU
Admin 2022-09-16 群英技术资讯 1048 次浏览
今天就跟大家聊聊有关“python目标检测IOU的特点是什么,如何计算IOU”的内容,可能很多人都不太了解,为了让大家认识和更进一步的了解,小编给大家总结了以下内容,希望这篇“python目标检测IOU的特点是什么,如何计算IOU”文章能对大家有帮助。神经网络的应用还有许多,目标检测就是其中之一,目标检测中有一个很重要的概念便是IOU
IOU是一种评价目标检测器的一种指标。
下图是一个示例:图中绿色框为实际框(好像不是很绿……),红色框为预测框,当我们需要判断两个框之间的关系时,需要用什么指标呢?
此时便需要用到IOU。

计算IOU的公式为:

可以看到IOU是一个比值,即交并比。
在分子部分,值为预测框和实际框之间的重叠区域;
在分母部分,值为预测框和实际框所占有的总区域。


交区域和并区域的比值,就是IOU。
与分类任务不同,我们的预测框的坐标需要去匹配实际框的坐标,而坐标的完全匹配是不现实的。因此,我们需要定义一个评估指标,奖励那些与匹配框匹配较好的预测框。

本文将画出两个矩形框,并计算他们的IOU。
效果如下:

import cv2
import numpy as np
def CountIOU(RecA, RecB):
xA = max(RecA[0], RecB[0])
yA = max(RecA[1], RecB[1])
xB = min(RecA[2], RecB[2])
yB = min(RecA[3], RecB[3])
# 计算交集部分面积
interArea = max(0, xB - xA + 1) * max(0, yB - yA + 1)
# 计算预测值和真实值的面积
RecA_Area = (RecA[2] - RecA[0] + 1) * (RecA[3] - RecA[1] + 1)
RecB_Area = (RecB[2] - RecB[0] + 1) * (RecB[3] - RecB[1] + 1)
# 计算IOU
iou = interArea / float(RecA_Area + RecB_Area - interArea)
return iou
img = np.zeros((512,512,3), np.uint8)
img.fill(255)
RecA = [50,50,300,300]
RecB = [60,60,320,320]
cv2.rectangle(img, (RecA[0],RecA[1]), (RecA[2],RecA[3]), (0, 255, 0), 5)
cv2.rectangle(img, (RecB[0],RecB[1]), (RecB[2],RecB[3]), (255, 0, 0), 5)
IOU = CountIOU(RecA,RecB)
font = cv2.FONT_HERSHEY_SIMPLEX
cv2.putText(img,"IOU = %.2f"%IOU,(130, 190),font,0.8,(0,0,0),2)
cv2.imshow("image",img)
cv2.waitKey()
cv2.destroyAllWindows()
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
判断某一年是否闰年的条件很简单,该年份必须满足它是4的倍数且不是100的倍数;或者年份是400的倍数。
内容介绍Python中插入图片绘制子图绘制1*2的子图绘制2*2的子图绘制不规则子图绘制图中代码frommatplotlibimportpyplotaspltplt.style.use('
range()方法是Python中常用的方法, 但是在Python2和Python3中使用方法不同,下面看下它们的不同使用方法。range方法详解range(start, st
这篇文章主要介绍了python基础之爬虫入门,文中有非常详细的代码示例,对正在学习python爬虫的小伙伴们有很好地帮助哟,需要的朋友可以参考下
python中如何实现列表去重不打乱顺序?方法一,使用集合set去重;方法二,使用用sort()中的key字段进行设定;方法三,使用reduce()函数去重
成为群英会员,开启智能安全云计算之旅
立即注册关注或联系群英网络
7x24小时售前:400-678-4567
7x24小时售后:0668-2555666
24小时QQ客服
群英微信公众号
CNNIC域名投诉举报处理平台
服务电话:010-58813000
服务邮箱:service@cnnic.cn
投诉与建议:0668-2555555
Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 ICP核准(ICP备案)粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008