python中用pandas库怎样创建和读写csv文件
Admin 2022-09-13 群英技术资讯 545 次浏览
import numpy as np import pandas as pd # -----create an initial numpy array----- # data = np.zeros((8,4)) # print(data.dtype) # print(type(data)) # print(data.shape) # -----from array to dataframe----- # df = pd.DataFrame(data) # print(type(df)) # print(df.shape) # print(df) # -----edit columns and index----- # df.columns = ['A', 'B', 'C', 'D'] df.index = range(data.shape[0]) df.info() # -----save dataframe as csv----- # csv_save_path='./data_.csv' df.to_csv(csv_save_path, sep=',', index=False, header=True) # -----check----- # df = pd.read_csv(csv_save_path) print('-' * 25) print(df)
输出如下:
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 8 entries, 0 to 7
Data columns (total 4 columns):
A 8 non-null float64
B 8 non-null float64
C 8 non-null float64
D 8 non-null float64
dtypes: float64(4)
memory usage: 336.0 bytes
-------------------------
A B C D
0 0.0 0.0 0.0 0.0
1 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0
3 0.0 0.0 0.0 0.0
4 0.0 0.0 0.0 0.0
5 0.0 0.0 0.0 0.0
6 0.0 0.0 0.0 0.0
7 0.0 0.0 0.0 0.0
import pandas as pd import numpy as np csv_path = './data_.csv' # -----saved as dataframe----- # data = pd.read_csv(csv_path) # ---if index is given in csv file, you can use next line of code to replace the previous one--- # data = pd.read_csv(csv_path, index_col=0) print(type(data)) print(data) print(data.shape) # -----saved as array----- # data_ = np.array(data) # data_ = data.values print(type(data_)) print(data_) print(data_.shape)
输出如下:
<class 'pandas.core.frame.DataFrame'>
A B C D
0 0.0 0.0 0.0 0.0
1 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0
3 0.0 0.0 0.0 0.0
4 0.0 0.0 0.0 0.0
5 0.0 0.0 0.0 0.0
6 0.0 0.0 0.0 0.0
7 0.0 0.0 0.0 0.0
(8, 4)
<class 'numpy.ndarray'>
[[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]]
(8, 4)
import pandas as pd import numpy as np csv_path = './data_.csv' df = pd.read_csv(csv_path) # -----edit columns and index----- # df.columns = ['X1', 'X2', 'X3', 'Y'] df.index = range(df.shape[0]) # df.index = [i+1 for i in range(df.shape[0])] # -----columns operations----- # Y = df['Y'] df['X4'] = [4 for i in range(df.shape[0])] # add df['X5'] = [5 for i in range(df.shape[0])] # print(df) df.drop(columns='Y', inplace=True) # delete # print(df) df['X1'] = [i+1 for i in range(df.shape[0])] # correct --(1) # df.iloc[:df.shape[0], 0] = [i+1 for i in range(df.shape[0])] # correct --(2) # print(df) df['Y'] = Y_temp # print(df) # -----rows operations----- # df.loc[df.shape[0]] = [i+2 for i in range(6)] # add # print(df) df.drop(index=4, inplace=True) # delete # print(df) df.loc[0] = [i+1 for i in range(df.shape[1])] # correct # print(df) # -----edit index again after rows operations!!!----- # df.index = range(df.shape[0]) # -----save dataframe as csv----- # csv_save_path='./data_copy.csv' df.to_csv(csv_save_path, sep=',', index=False, header=True) print(df)
输出如下:
X1 X2 X3 X4 X5 Y
0 1.0 2.0 3.0 4 5 6.0
1 2.0 0.0 0.0 4 5 0.0
2 3.0 0.0 0.0 4 5 0.0
3 4.0 0.0 0.0 4 5 0.0
4 6.0 0.0 0.0 4 5 0.0
5 7.0 0.0 0.0 4 5 0.0
6 8.0 0.0 0.0 4 5 0.0
7 2.0 3.0 4.0 5 6 7.0
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
这篇文章主要为大家介绍了Python入门类和对象,具有一定的参考价值,感兴趣的小伙伴们可以参考一下,希望能够给你带来帮助
getattr是python里的一个内建函数getattr()这个方法最主要的作用是实现反射机制。也就是说可以通过字符串获取方法实例。这样,你就可以把一个类可能要调用的方法放在配置文件里,在需要的时候动态加载。python里面跟getattr相关的有hasattr,setattr,delattr ,那么我们通过下面的例子,来详细的说说他们的用法。1classXiaorui:2
这篇文章主要介绍了利用python开发app实战的方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
这篇文章主要介绍了如何利用 K-Means 聚类进行色彩量化,以减少图像中颜色数量。文中的代码具有一定的学习价值,感兴趣的小伙伴可以关注一下
如果字典中存储了一些值,我想要取出来该怎么操作呢?取出字典中所有的键-值对时,可以使用items()返回一个键值对列表,并配合for循环进行遍历
成为群英会员,开启智能安全云计算之旅
立即注册Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008