Python OpenCV如何使用,相关函数有哪些
Admin 2022-09-13 群英技术资讯 897 次浏览
很多朋友都对“Python OpenCV如何使用,相关函数有哪些”的内容比较感兴趣,对此小编整理了相关的知识分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获,那么感兴趣的朋友就继续往下看吧!本篇主要介绍一下OpenCV的基本使用和相关函数的介绍。
以下所有操作都基于这三个库:
import cv2
import numpy as np
import matplotlib.pylab as plt
原图

import cv2
img = cv2.imread('文件路径'[,cv2.IMREAD_UNCHANGED])
# 其他参数
# 以原图读取 -cv2.IMREAD_UNCHANGED-默认
# 以灰度图读取 -cv2.IMREAD_GRAYSCALE
# 以彩色图读取 -cv2.IMREAD_COLOR
import cv2
cv2.imwrite('image/gray_test.jpg',img)
(1)使用OpenCV自带的显示函数
import cv2
# 可以决定窗口是否可以调整大小。
# cv2.namedWindow('image', cv2.WINDOW_NORMAL) # 特殊情况
cv2.imshow('显示窗口的名字',img)
cv2.waitKey(0)
cv2.destroyAllWindows() # 关闭所有窗口
'''
cv2.waitKey(num)函数的参数介绍
num<0 按键输入消失
num==0 或不填系数 ,一直不消失
num>0 停滞num秒
'''
(2)使用matplotlib库实现
不能直接用matplotlib去显示opencv读取的图像,因为opencv读取的图像的通道顺序是[B,G,R],而matplotlib显示图像时图像的通道顺序是[R,G,B]。
解决办法
import cv2
img = cv2.imread('文件路径')
# 第一种方法
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
# 第二种方法
# b, g, r = cv2.split(img)
# img = cv2.merge([r, g, b])
显示图像
import cv2
matplotlib.pyplot as plt
img = cv2.imread('文件路径')
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
plt.rcParams['font.sans-serif'] = ['FangSong'] # 支持中文标签
# (2,2,1)表示一共可显示2行2列4个图像,1表示第一个图像
plt.subplot(2,2,1), plt.title("图1") # plt.axis('off') 关闭坐标轴
plt.imshow(img) # 还可以添加一个参数cmap='gray'
plt.subplot(2,2,2), plt.title("图2")
plt.imshow(img)
plt.subplot(2,2,3), plt.title("图3"),
plt.imshow(img)
plt.subplot(2,2,4), plt.title("图4"),
plt.imshow(img)
plt.show()
(3)拼接图像并显示
import cv2
import numpy as np
# 拼接多个图片并显示
img1 = cv2.imread("1.jpg",cv2.IMREAD_UNCHANGED)
img2 = cv2.imread("2.jpg",cv2.IMREAD_UNCHANGED)
# 需要将两图片的大小改为一致
# heigh = img1.shape[0] # 高
# width = img1.shape[1] # 宽
img2 = cv2.resize(img2,(img1.shape[1],img1.shape[0]))
res = np.hstack((img1,img2,img2)) # 水平连接
# np.vstack((img1,img2,img2)) # 竖直连接
cv2.imshow('res',res)
cv2.waitKey(0)
cv2.destroyAllWindows()
# 获取BGR图的高、宽 heigh = img.shape[0] # 高 width = img.shape[1] # 宽 # 获取BGR图的高、宽、深度 h,w,d = img.shape # 获得图片大小 h*w 或 h*w*d img_size = img.size # 获得图片数据类型 img.dtype
# 图片缩放->(200,100) img2 = cv2.resize(img1, (200, 100)) # (宽,高) # 按比例缩放->(0.5,1.2) img2 = cv2.resize(img1, (round(cols * 0.5), round(rows * 1.2))) # 按比例缩放,参数版 img2 = cv2.resize(img1, None, fx=1.2, fy=0)
# 获取区域在原图中的四个点的位置(x1,y1)(x2,y1)(x1,y2)(x2,y2) # 图像高度不变,切割宽度,原图上开始横坐标-->原图上结束横坐标 # img_x_y = img[高:高,宽:宽] img_x_y_1 = img[ : , x1(开始横坐标):x2(结束横坐标)] # 图像宽度不变,切割高度,原图上开始纵坐标-->原图上结束纵坐标 img_x_y_2 = img[y1(开始纵坐标):y2(结束纵坐标), : ] # 获取具体位置 img_x_y = img[y1(开始纵坐标):y2(结束纵坐标),x1(开始横坐标):x2(结束横坐标)]
例如:
import cv2
path = 'C:\\Users\\lenovo\\Desktop\\demo.jpg'
img = cv2.imread(path)
img_1 = img[100:600,200:500]
cv2.imshow('1',img_1)
cv2.waitKey(0)
cv2.destroyAllWindows()

# 通道分解方案1 b = img[:,:,0] g = img[:,:,1] r = img[:,:,2] # 通道分解方案2 b,g,r = cv2.split(img) # 通道合并 rgb = cv2.merge([r,g,b]) # 只显示蓝色通道 b = cv2.split(a)[0] g = np.zeros((rows,cols),dtype=a.dtype) r = np.zeros((rows,cols),dtype=a.dtype) m = cv2.merge([b,g,r])
# 超过255则为0 result1 = img1 + img2 # 超过255则为255 result2 = cv2.add(img1, img2) # 图像带权重融合,第5个参数为偏移量 result = cv2.addWeighted(img1,0.5,img2,0.5, 0)
img2 = cv2.flip(img1, 0) #上下翻转 img2 = cv2.flip(img1, 1) #左右翻转 img2 = cv2.flip(img1, -1) #上下、左右翻转
# 图片向下采样,高斯滤波 1/2 删掉偶数列 img1 = cv2.pyrDown(img) # 图片向上采样 ,面积*2 高斯滤波*4 ,下采样为不可逆运算 img3 = cv2.pyrUp(img2) # 计算拉普拉斯金字塔 img1 = cv2.pyrDown(img) #下采样 img2 = cv2.pyrUp(img1) #上采样 img3 = img-img2
##matplotlib 绘制直方图
plt.hist(img.ravel(),256)
##用opencv计算直方图列表
hist = cv2.calcHist(images= [img],channels=[0],mask=None,histSize=[256],ranges=[0,255])
##掩膜提取局部直方图
pad = np.zeros(img.shape,np.uint8)
pad[200:400,200:400]=255
hist_MASK = cv2.calcHist(images= [img],channels=[0],mask=pad,histSize=[256],ranges=[0,255])
##opencv 交、并、补、异或操作
masked_img = cv2.bitwise_and(img,mask)
##直方图均衡化原理
# 图像直方图->直方图归一化->累计直方图->*255 # x坐标映射->对原来的像素值进行新像素值编码
# 直方图均衡化调用
img1 = cv2.equalizeHist(img)
# matplotlib绘制图片前通道转换
img_rgb = cv2.cvtColor(img,cv2.COLOR_BGR2RGB) #通道不一致性
##matplotlib多图绘制在一个面板上
plt.subplot('2,2,1'),plt.imshow(img,cmap=plt.cm.gray),plt.axis('off'),plt.title('original')
plt.subplot('2,2,2'), plt.imshow(img1, cmap = plt.cm.gray), plt.axis('off')
plt.subplot('2,2,3'), plt.hist(img.ravel(),256)
plt.subplot('2,2,4'), plt.hist(img1.ravel(), 256)
# 彩色图转灰度图 img2 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY) # BGR图转RGB图(重点:opencv的通道是 蓝、绿、红跟计算机常用的红、绿、蓝通道相反) img2 = cv2.cvtColor(img1, cv2.COLOR_BGR2RGB) # 灰度图转BGR图,每个通道都是之前的灰度值 img2 = cv2.cvtColor(img1, cv2.COLOR_GRAY2BGR)
r,b = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY) #图像二值化,阈值127,r为返回阈值,b为二值图 r,b = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY_INV) #图像反二值化 r,b = cv2.threshold(img,127,255,cv2.THRESH_TOZERO) #低于threshold则为0 r,b = cv2.threshold(img,127,255,cv2.THRESH_TOZERO_INV) #高于threshold则为0 r,b = cv2.threshold(img,127,255,cv2.THRESH_TRUNC) #截断=>高于threshold则为threshold
# 均值滤波 img2 = cv2.blur(img1, (5, 5)) #sum(square)/25 # normalize=1 均值滤波,normalize=0 区域内像素求和 img1 = cv2.boxFilter(img, -1, (2, 2), normalize=1) # 高斯滤波,第三个参数是方差,默认0计算公式: sigmaX=sigmaxY=0.3((ksize-1)*0.5-1)+0.8 (注:卷积核只能是奇数) img1 = cv2.GaussianBlur(img, (3, 3), 0) #距离像素中心点近的权重较大,以高斯方式往四周分布 # 中值滤波,效果非常好 img1 = cv2.medianBlur(img,3) #获得中心点附近像素排序后的中值
(1)图像腐蚀,k为全为1的卷积核
k = np.ones((5,5),np.uint8) img1 = cv2.dilate(img, k, iterations=2)
(2)图像膨胀
k = np.ones((5,5),np.uint8) img1 = cv2.dilate(img, k, iterations=2)
(3)图像开运算 (先腐蚀后膨胀),去掉图形外侧噪点
k = np.ones((5,5),np.uint8) img1 = cv2.morphologyEx(img, cv2.MORPH_OPEN, k, iterations=2)
(4)图像闭运算(先膨胀后腐蚀) ,去掉图形内侧噪点
k = np.ones((5,5),np.uint8) img1 = cv2.morphologyEx(img, cv2.MORPH_CLOSE, k, iterations=2)
# 高帽运算 (原图-开运算),获得图形外噪点 k=np.ones((5,5),np.uint8) img1 = cv2.morphologyEx(img, cv2.MORPH_TOPHAT, k) # 黑帽运算(闭运算-原图),获得图像内噪点 k = np.ones((10,10),np.uint8) img1 = cv2.morphologyEx(img, cv2.MORPH_BLACKHAT, k)
import cv2
import matplotlib.pyplot as plt
import numpy as np
# 各种算子
img = cv2.imread('C:\\Users\\lenovo\\Desktop\\demo.jpg')
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = cv2.GaussianBlur(img, (5, 5), 1) # 高斯平滑
img_median = cv2.medianBlur(img, 3) # 中值滤波
img_gray = cv2.cvtColor(img_median, cv2.COLOR_BGR2GRAY)
# Roberts 算子
kernelx = np.array([[-1, 0], [0, 1]], dtype=int)
kernely = np.array([[0, -1], [1, 0]], dtype=int)
x = cv2.filter2D(img_gray, cv2.CV_16S, kernelx)
y = cv2.filter2D(img_gray, cv2.CV_16S, kernely)
absX = cv2.convertScaleAbs(x)
absY = cv2.convertScaleAbs(y)
Roberts = cv2.addWeighted(absX, 0.5, absY, 0.5, 0)
plt.rcParams['font.sans-serif'] = ['FangSong'] # 支持中文标签
plt.subplot(2,2,1), plt.title("Roberts算子"), plt.axis('off')
plt.imshow(Roberts,cmap='gray') # matplotlib 显示彩色图像(RGB格式)
# Prewitt 算子
kernelx = np.array([[1,1,1],[0,0,0],[-1,-1,-1]],dtype=int)
kernely = np.array([[-1,0,1],[-1,0,1],[-1,0,1]],dtype=int)
x = cv2.filter2D(img_gray, cv2.CV_16S, kernelx)
y = cv2.filter2D(img_gray, cv2.CV_16S, kernely)
# 转 uint8 ,图像融合
absX = cv2.convertScaleAbs(x)
absY = cv2.convertScaleAbs(y)
Prewitt = cv2.addWeighted(absX, 0.5, absY, 0.5, 0)
plt.subplot(2,2,2), plt.title("Prewitt算子"), plt.axis('off')
plt.imshow(Prewitt,cmap='gray') # matplotlib 显示彩色图像(RGB格式)
#Sobel算子
# 梯度方向: x
sobelx = cv2.Sobel(img_gray, cv2.CV_8U, 1, 0, ksize=3)
sobely = cv2.Sobel(img_gray, cv2.CV_8U, 0, 1, ksize=3)
sobel = cv2.addWeighted(sobelx,1,sobely,1,0)
plt.subplot(2,2,3), plt.title("sobel算子"), plt.axis('off')
plt.imshow(sobel,cmap='gray') # matplotlib 显示彩色图像(RGB格式)
#canny算子
binary = cv2.Canny(img_gray, 100, 200)
plt.subplot(2,2,4), plt.title("Canny算子"), plt.axis('off')
plt.imshow(binary,cmap='gray') # matplotlib 显示彩色图像(RGB格式)
# matplotlib 显示彩色图像(RGB格式)
# img = cv2.imread("D:/test/26.png", 0)
# Laplacian算子
# gray_lap = cv2.Laplacian(img, cv2.CV_16S, ksize=3)
# dst = cv2.convertScaleAbs(gray_lap) # 转回uint8
plt.show()
gray_img = cv2.cvtColor(img_1,cv2.COLOR_BGR2GRAY) #灰度图转化 dep,img_bin = cv2.threshold(gray_img,128,255,cv2.THRESH_BINARY) #二值图转化 image_contours,hierarchy = cv2.findContours(img_bin,mode=cv2.RETR_TREE,method = cv2.CHAIN_APPROX_SIMPLE) #获得图像轮廓 to_write = img_1.copy() #原始图像copy,否则会在原图上绘制 ret = cv2.drawContours(to_write,image_contours,-1,(0,0,255),2) #红笔绘制图像轮廓 plt.subplot(2,1,1),plt.imshow(ret,'gray') plt.show()
# 数据读取-视频
# cv2.VideoCapture #可以捕获摄像头,用数字来控制不同的设备,例如0,1。
# 如果是视频文件,直接指定好路径即可
vc = cv2.VideoCapture("test. mp4")
# 检查是否打开正确
if vc.isOpened():
oepn, frame = vc.reado()
else:
open = False
while open:
ret, frame = vc.read ()
if frame is None:
break
if ret == True:
gray = cv2. cvtColor(frame, cv2.COLOR_BGR2GRAY)
cv2.imshow("result", gray)
if cv2.waitKey(10) & OxFF == 27:
break
vc.release()
cv2.destroyAllWindows()
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
这篇文章主要介绍了pycharm无法安装cv2模块问题及解决方案,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
这篇文章主要为大家介绍了python神经网络MobileNetV2模型的复现详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
这篇文章主要为大家详细介绍了如何利用Python清理重复的文件,文中的示例代码讲解详细,对我们学习Python有一定帮助,需要的可以参考一下
大家都知道concat()函数可以沿着一条轴将多个对象进行堆叠,其使用方式类似数据库中的数据表合并,在使用merge()函数进行合并时,默认会使用重叠的列索引做为合并键,即取行索引重叠的部分,本文给大家介绍python 数据合并concat函数与merge函数,感兴趣的朋友一起看看吧
文中详细整理了关于Python模块和包的相关知识点,刚入门Python的小伙伴们可以学习一下,有助于加深Python基础的理解.而且有详细说明及代码示例,需要的朋友可以参考下
成为群英会员,开启智能安全云计算之旅
立即注册Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008