如何用PyTorch搭建LSTM实现多变量多步长时间序列预
Admin 2022-09-09 群英技术资讯 942 次浏览
这篇文章主要讲解了“如何用PyTorch搭建LSTM实现多变量多步长时间序列预”,文中的讲解内容简单、清晰、详细,对大家学习或是工作可能会有一定的帮助,希望大家阅读完这篇文章能有所收获。下面就请大家跟着小编的思路一起来学习一下吧。在前面的两篇文章PyTorch搭建LSTM实现时间序列预测(负荷预测)和PyTorch搭建LSTM实现多变量时间序列预测(负荷预测)中,我们利用LSTM分别实现了单变量单步长时间序列预测和多变量单步长时间序列预测。
本篇文章主要考虑用PyTorch搭建LSTM实现多变量多步长时间序列预测。
数据集为某个地区某段时间内的电力负荷数据,除了负荷以外,还包括温度、湿度等信息。
本文中,我们根据前24个时刻的负荷以及该时刻的环境变量来预测接下来4个时刻的负荷(步长可调)。
def load_data(file_name):
global MAX, MIN
df = pd.read_csv(os.path.dirname(os.getcwd()) + '/data/new_data/' + file_name, encoding='gbk')
columns = df.columns
df.fillna(df.mean(), inplace=True)
MAX = np.max(df[columns[1]])
MIN = np.min(df[columns[1]])
df[columns[1]] = (df[columns[1]] - MIN) / (MAX - MIN)
return df
class MyDataset(Dataset):
def __init__(self, data):
self.data = data
def __getitem__(self, item):
return self.data[item]
def __len__(self):
return len(self.data)
def nn_seq(file_name, B, num):
print('data processing...')
data = load_data(file_name)
load = data[data.columns[1]]
load = load.tolist()
data = data.values.tolist()
seq = []
for i in range(0, len(data) - 24 - num, num):
train_seq = []
train_label = []
for j in range(i, i + 24):
x = [load[j]]
for c in range(2, 8):
x.append(data[j][c])
train_seq.append(x)
for j in range(i + 24, i + 24 + num):
train_label.append(load[j])
train_seq = torch.FloatTensor(train_seq)
train_label = torch.FloatTensor(train_label).view(-1)
seq.append((train_seq, train_label))
# print(seq[-1])
Dtr = seq[0:int(len(seq) * 0.7)]
Dte = seq[int(len(seq) * 0.7):len(seq)]
train_len = int(len(Dtr) / B) * B
test_len = int(len(Dte) / B) * B
Dtr, Dte = Dtr[:train_len], Dte[:test_len]
train = MyDataset(Dtr)
test = MyDataset(Dte)
Dtr = DataLoader(dataset=train, batch_size=B, shuffle=False, num_workers=0)
Dte = DataLoader(dataset=test, batch_size=B, shuffle=False, num_workers=0)
return Dtr, Dte
其中num表示需要预测的步长,如num=4表示预测接下来4个时刻的负荷。
任意输出其中一条数据:
(tensor([[0.5830, 1.0000, 0.9091, 0.6957, 0.8333, 0.4884, 0.5122],
[0.6215, 1.0000, 0.9091, 0.7391, 0.8333, 0.4884, 0.5122],
[0.5954, 1.0000, 0.9091, 0.7826, 0.8333, 0.4884, 0.5122],
[0.5391, 1.0000, 0.9091, 0.8261, 0.8333, 0.4884, 0.5122],
[0.5351, 1.0000, 0.9091, 0.8696, 0.8333, 0.4884, 0.5122],
[0.5169, 1.0000, 0.9091, 0.9130, 0.8333, 0.4884, 0.5122],
[0.4694, 1.0000, 0.9091, 0.9565, 0.8333, 0.4884, 0.5122],
[0.4489, 1.0000, 0.9091, 1.0000, 0.8333, 0.4884, 0.5122],
[0.4885, 1.0000, 0.9091, 0.0000, 1.0000, 0.3256, 0.3902],
[0.4612, 1.0000, 0.9091, 0.0435, 1.0000, 0.3256, 0.3902],
[0.4229, 1.0000, 0.9091, 0.0870, 1.0000, 0.3256, 0.3902],
[0.4173, 1.0000, 0.9091, 0.1304, 1.0000, 0.3256, 0.3902],
[0.4503, 1.0000, 0.9091, 0.1739, 1.0000, 0.3256, 0.3902],
[0.4502, 1.0000, 0.9091, 0.2174, 1.0000, 0.3256, 0.3902],
[0.5426, 1.0000, 0.9091, 0.2609, 1.0000, 0.3256, 0.3902],
[0.5579, 1.0000, 0.9091, 0.3043, 1.0000, 0.3256, 0.3902],
[0.6035, 1.0000, 0.9091, 0.3478, 1.0000, 0.3256, 0.3902],
[0.6540, 1.0000, 0.9091, 0.3913, 1.0000, 0.3256, 0.3902],
[0.6181, 1.0000, 0.9091, 0.4348, 1.0000, 0.3256, 0.3902],
[0.6334, 1.0000, 0.9091, 0.4783, 1.0000, 0.3256, 0.3902],
[0.6297, 1.0000, 0.9091, 0.5217, 1.0000, 0.3256, 0.3902],
[0.5610, 1.0000, 0.9091, 0.5652, 1.0000, 0.3256, 0.3902],
[0.5957, 1.0000, 0.9091, 0.6087, 1.0000, 0.3256, 0.3902],
[0.6427, 1.0000, 0.9091, 0.6522, 1.0000, 0.3256, 0.3902]]), tensor([0.6360, 0.6996, 0.6889, 0.6434]))
数据格式为(X, Y)。其中X一共24行,表示前24个时刻的负荷值和该时刻的环境变量。Y一共四个值,表示需要预测的四个负荷值。需要注意的是,此时input_size=7,output_size=4。
这里采用了深入理解PyTorch中LSTM的输入和输出(从input输入到Linear输出)中的模型:
class LSTM(nn.Module):
def __init__(self, input_size, hidden_size, num_layers, output_size, batch_size):
super().__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.num_layers = num_layers
self.output_size = output_size
self.num_directions = 1
self.batch_size = batch_size
self.lstm = nn.LSTM(self.input_size, self.hidden_size, self.num_layers, batch_first=True)
self.linear = nn.Linear(self.hidden_size, self.output_size)
def forward(self, input_seq):
h_0 = torch.randn(self.num_directions * self.num_layers, self.batch_size, self.hidden_size).to(device)
c_0 = torch.randn(self.num_directions * self.num_layers, self.batch_size, self.hidden_size).to(device)
# print(input_seq.size())
seq_len = input_seq.shape[1]
# input(batch_size, seq_len, input_size)
input_seq = input_seq.view(self.batch_size, seq_len, self.input_size)
# output(batch_size, seq_len, num_directions * hidden_size)
output, _ = self.lstm(input_seq, (h_0, c_0))
# print('output.size=', output.size())
# print(self.batch_size * seq_len, self.hidden_size)
output = output.contiguous().view(self.batch_size * seq_len, self.hidden_size) # (5 * 30, 64)
pred = self.linear(output) # pred()
# print('pred=', pred.shape)
pred = pred.view(self.batch_size, seq_len, -1)
pred = pred[:, -1, :]
return pred
训练和预测代码和前几篇都差不多,只是需要注意input_size和output_size的大小。
训练了100轮,预测接下来四个时刻的负荷值,MAPE为7.53%:

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
GFPGAN是腾讯开源的人脸修复算法,它利用预先训练好的面部 GAN(如 StyleGAN2)中封装的丰富和多样的先验因素进行盲脸 (blind face)修复。这篇文章主要为大家介绍通过GFPGAN实现模糊照片人脸恢复清晰,需要的朋友可以参考一下
这篇文章主要介绍了python如何将一个四位数反向输出,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
这篇文章主要介绍了python实现客户端和服务端之间进行通信,文章通过python利用socket展开详情介绍,具有一定的参考价值,需要的小伙伴可以参考一下
这篇文章主要介绍了Python绘制折线图可视化神器pyecharts,文章围绕主题展开详细的内容介绍,具有一定的参考价值,需要的小伙伴可以参考一下
相信很多人都很想把python文件封装成exe文件,下面这篇文章主要给大家介绍了关于python封装成exe的相关资料,文中通过图文介绍的非常详细,需要的朋友可以参考下
成为群英会员,开启智能安全云计算之旅
立即注册关注或联系群英网络
7x24小时售前:400-678-4567
7x24小时售后:0668-2555666
24小时QQ客服
群英微信公众号
CNNIC域名投诉举报处理平台
服务电话:010-58813000
服务邮箱:service@cnnic.cn
投诉与建议:0668-2555555
Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008