Python中字典缓存池的实现是什么样
Admin 2022-09-09 群英技术资讯 700 次浏览
这篇文章我们来了解“Python中字典缓存池的实现是什么样”的内容,小编通过实际的案例向大家展示了操作过程,简单易懂,有需要的朋友可以参考了解看看,那么接下来就跟随小编的思路来往下学习吧,希望对大家学习或工作能有帮助。
那么当我们在销毁一个PyDictObject时,也肯定是要先释放ma_keys和ma_values。
如果是分离表,会将每个value的引用计数减1,然后释放ma_values;再将每个key的引用计数减1,然后释放ma_keys。最后再释放PyDictObject本身。
如果是结合表,由于key、value都在ma_keys中,将每个key、value的引用计数减1之后,只需要再释放ma_keys即可。最后再释放PyDictObject本身。
整个过程还是很清晰的,只不过这里面遗漏了点什么东西,没错,就是缓存池。在介绍浮点数的时候,我们说不同的对象都有自己的缓存池,当然字典也不例外。并且除了PyDictObject之外,PyDictKeysObject也有相应的缓存池,毕竟它负责存储具体的键值对。
那么下面我们就来研究一下这两者的缓存池。
字典的缓存池和列表的缓存池高度相似,都是采用数组实现的,并且容量也是80个。
#ifndef PyDict_MAXFREELIST #define PyDict_MAXFREELIST 80 #endif static PyDictObject *free_list[PyDict_MAXFEELIST]; static int numfree = 0; //缓存池当前存储的元素个数
开始时,这个缓存池什么也没有,直到第一个PyDictObject对象被销毁时,缓存池里面才开始接纳被销毁的PyDictObject对象。
static void
dict_dealloc(PyDictObject *mp)
{
//获取ma_values指针
PyObject **values = mp->ma_values;
//获取ma_keys指针
PyDictKeysObject *keys = mp->ma_keys;
Py_ssize_t i, n;
//因为要被销毁,所以让GC不再跟踪
PyObject_GC_UnTrack(mp);
//用于延迟释放
Py_TRASHCAN_SAFE_BEGIN(mp)
//调整引用计数
//如果values不为NULL,说明是分离表
if (values != NULL) {
//将指向的value、key的引用计数减1
//然后释放ma_values和ma_keys
if (values != empty_values) {
for (i = 0, n = mp->ma_keys->dk_nentries; i < n; i++) {
Py_XDECREF(values[i]);
}
free_values(values);
}
DK_DECREF(keys);
}
//否则说明是结合表
else if (keys != NULL) {
//结合表的话,dk_refcnt一定是1
//此时只需要释放ma_keys,因为键值对全部由它来维护
//在DK_DECREF里面,会将每个key、value的引用计数减1
//然后释放ma_keys
assert(keys->dk_refcnt == 1);
DK_DECREF(keys);
}
//将被销毁的对象放到缓存池当中
if (numfree < PyDict_MAXFREELIST && Py_TYPE(mp) == &PyDict_Type)
free_list[numfree++] = mp;
else
//如果缓存池已满,则将释放内存
Py_TYPE(mp)->tp_free((PyObject *)mp);
Py_TRASHCAN_SAFE_END(mp)
}
同理,当创建字典时,也会优先从缓存池里面获取。
static PyObject *
new_dict(PyDictKeysObject *keys, PyObject **values)
{
//...
if (numfree) {
mp = free_list[--numfree];
}
//...
}
因此在缓存池的实现上,字典和列表有着很高的相似性。不仅都是由数组实现,在销毁的时候也都会放在数组的尾部,创建的时候也会从数组的尾部获取。当然啦,因为这么做符合数组的特性,如果销毁和创建都是在数组的头部操作,那么时间复杂度就从O(1)变成了O(n)。
我们用Python来测试一下:
d1 = {k: 1 for k in "abcdef"}
d2 = {k: 1 for k in "abcdef"}
print("id(d1):", id(d1))
print("id(d2):", id(d2))
# 放到缓存池的尾部
del d1
del d2
# 缓存池:[d1, d2]
# 从缓存池的尾部获取
# 显然id(d3)和上面的id(d2)是相等的
d3 = {k: 1 for k in "abcdefghijk"}
# id(d4)和上面的id(d1)是相等的
d4 = {k: 1 for k in "abcdefghijk"}
print("id(d3):", id(d3))
print("id(d4):", id(d4))
# 输出结果
"""
id(d1): 1363335780736
id(d2): 1363335780800
id(d3): 1363335780800
id(d4): 1363335780736
"""
输出结果和我们的预期是相符合的,以上就是PyDictObject的缓存池。
PyDictKeysObject也有自己的缓存池,同样基于数组实现,大小是80。
//PyDictObject的缓存池叫 free_list //PyDictKeysObject的缓存池叫 keys_free_list //两者不要搞混了 static PyDictKeysObject *keys_free_list[PyDict_MAXFREELIST]; static int numfreekeys = 0; //缓存池当前存储的元素个数
我们先来看看它的销毁过程:
static void
free_keys_object(PyDictKeysObject *keys)
{
//将每个entry的me_key、me_value的引用计数减1
for (i = 0, n = keys->dk_nentries; i < n; i++) {
Py_XDECREF(entries[i].me_key);
Py_XDECREF(entries[i].me_value);
}
#if PyDict_MAXFREELIST > 0
//将其放在缓存池当中
//当缓存池未满、并且dk_size为8的时候被缓存
if (keys->dk_size == PyDict_MINSIZE && numfreekeys < PyDict_MAXFREELIST) {
keys_free_list[numfreekeys++] = keys;
return;
}
#endif
PyObject_FREE(keys);
}
销毁的时候,也是放在了缓存池的尾部,那么创建的时候肯定也是先从缓存池的尾部获取。
static PyDictKeysObject *new_keys_object(Py_ssize_t size)
{
PyDictKeysObject *dk;
Py_ssize_t es, usable;
//...
//创建 ma_keys,如果缓存池有可用对象、并且size等于8,
//那么会从 keys_free_list 中获取
if (size == PyDict_MINSIZE && numfreekeys > 0) {
dk = keys_free_list[--numfreekeys];
}
else {
// 否则malloc重新申请
dk = PyObject_MALLOC(sizeof(PyDictKeysObject)
+ es * size
+ sizeof(PyDictKeyEntry) * usable);
}
}
//...
return dk;
}
所以PyDictKeysObject的缓存池和列表同样是高度相似的,只不过它想要被缓存,还需要满足一个额外的条件,那就是dk_size必须等于8。很明显,这个限制是出于对内存方面的考量。
我们还是来验证一下:
import ctypes
class PyObject(ctypes.Structure):
_fields_ = [("ob_refcnt", ctypes.c_ssize_t),
("ob_type", ctypes.c_void_p)]
class PyDictObject(PyObject):
_fields_ = [("ma_used", ctypes.c_ssize_t),
("ma_version_tag", ctypes.c_uint64),
("ma_keys", ctypes.c_void_p),
("ma_values", ctypes.c_void_p)]
d1 = {_: 1 for _ in "mnuvwxyz12345"}
print(
PyDictObject.from_address(id(d1)).ma_keys
) # 1962690551536
# 键值对个数超过了8,dk_size必然也超过了 8
# 那么当销毁d1的时候,d1.ma_keys不会被缓存
# 而是会直接释放掉
del d1
d2 = {_: 1 for _ in "a"}
print(
PyDictObject.from_address(id(d2)).ma_keys
) # 1962387670624
# d2 的 dk_size 显然等于 8
# 因此它的 ma_keys 是会被缓存的
del d2
d3 = {_: 1 for _ in "abcdefg"}
print(
PyDictObject.from_address(id(d3)).ma_keys
) # 1962699215808
# 尽管 d2 的 ma_keys 被缓存起来了
# 但是 d3 的 dk_size 大于 8
# 因此它不会从缓存池中获取,而是重新创建
# d4 的 dk_size 等于 8
# 因此它会获取 d2 被销毁的 ma_keys
d4 = {_: 1 for _ in "abc"}
print(
PyDictObject.from_address(id(d4)).ma_keys
) # 1962387670624
所以从打印的结果来看,由于d4.ma_keys和d2.ma_keys是相同的,因此证实了我们的结论。不像列表和字典,它们是只要被销毁,就会放到缓存池里面,因为它们没有存储具体的数据,大小是固定的。
但是PyDictKeysObject不同,它存储了entry,每个entry占24字节。如果内部的entry非常多,那么缓存起来会有额外的内存开销。因此Python的策略是,只有在dk_size等于8的时候,才会缓存。当然这三者在缓存池的实现上,是基本一致的。
总的来说,Python的字典是一个被高度优化的数据结构,因为解释器在运行的时候也重度依赖字典,这就决定了它的效率会非常高。当然,我们没有涉及字典的全部内容,比如字典有很多方法,比如keys、values、items方法等等,我们并没有说。这些有兴趣的话,可以对着源码看一遍,不是很难。总之我们平时,也可以尽量多使用字典。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
这篇文章主要为大家介绍了python的集合类型,具有一定的参考价值,感兴趣的小伙伴们可以参考一下,希望能够给你带来帮助<BR>
这篇文章主要介绍了Python连接MySQL数据库后的一些基本操作,并以银行管理系统项目为例,为大家具体介绍了一下部分功能的实现,文中的示例代码具有一定的学习价值,感兴趣的可以了解一下
这篇文章主要介绍了python 如何实现跳过异常继续执行,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
这篇文章主要介绍了Python 对数字的千分位处理方式,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
什么是format函数?是一种字符串格式化的方法,主要是用来构造字符串。
成为群英会员,开启智能安全云计算之旅
立即注册Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008